搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于振动抑制高精度宽带激光扫频干涉测量方法

刘国栋 许新科 刘炳国 陈凤东 胡涛 路程 甘雨

引用本文:
Citation:

基于振动抑制高精度宽带激光扫频干涉测量方法

刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨

A method of suppressing vibration for high precision broadband laser frequency scanning interferometry

Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu
PDF
导出引用
  • 本文研究了基于振动抑制的高精度宽带激光扫频干涉测量方法.在激光扫频干涉测量中振动引起目标位移,导致在测量信号拍频中叠加了多普勒频移,该频移量通常远大于目标实际位移产生的频率变化,直接计算目标距离将造成测距精度下降.为解决该问题,本文首先建立了振动对宽带激光扫频干涉测距系统的影响模型,分析了振动对测距的影响机理,通过对测量系统的色散失配效应进行补偿降低了色散影响,然后对测量信号进行交叠分时Chirp Z变换计算不同时刻目标距离,进一步结合卡尔曼滤波方法对目标距离信息进行状态估计,使测量的标准差由185.4 μupm降低到9.0 μupm,有效降低了环境振动对测量结果的影响,提高了测量精度.该方法在不需要改变激光扫频干涉绝对距离测量装置的条件下,为进一步提高振动环境中的测距精度提供了解决方法,降低了装置复杂度和成本.
    In the paper we study the method of reducing environmental influence in broadband laser frequency scanning interferometer. Target displacement caused by vibration will result in Doppler shift in measurement beat frequency. The extent of frequency shift is usually much larger than the actual target displacement. So the direct calculating of the target distance will cause ranging precision to decrease. In this paper, we establish a model for the influence of environmental vibration on the measurement and analyze the influence of the vibration on ranging result. To suppress the vibration effect, the Kalman filter is combined with the overlapping Chirp Z transform to estimate the measured data. The general process is described as follows. Firstly, the tuning nonlinearity will lead to the frequency spectrum broadening, so this paper we use the frequency sampling method to correct the frequency modulation nonlinearity of the laser. The frequency sampling method has the advantages of high speed and high precision. Secondly, the measurement system has the dispersion mismatch effect due to the use of broadband frequency swept laser. To solve this problem, the influence of the dispersion on the measurement is reduced by using the method of dispersion chirp slope calibration. Thirdly, because of the long frequency sweep period of the external cavity swept frequency laser, the vibration process of the target cannot be recorded in real time by single sweep, so in this paper we propose segmenting the measurement signal of single sweep and conducting Chirp Z transform to calculate target distance at different times. Compared with FFT algorithm, Chirp Z transform can achieve arbitrary narrow band spectrum subdivision, with the advantages of high accuracy and fast frequency measurement. Lastly, the Chirp Z ranging result is further combined with the method of Kalman filter to estimate the state of the target distance information. The experimental results indicate that the measurement standard is reduced from 185.4 μm to 9 μm by the proposed method. Without changing the absolute distance measuring device of broadband laser frequency scanning interferometer, this method provides a solution for further improving the ranging accuracy in the vibration environment, and reduces the complexity and cost of the device.
      通信作者: 甘雨, ganyu@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51275120,61275096)资助的课题.
      Corresponding author: Gan Yu, ganyu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51275120, 61275096).
    [1]

    Zheng J 2004 Appl. Opt. 43 4189

    [2]

    Jack A S, Alois S, Lowell H 1999 Appl. Opt. 38 5981

    [3]

    Arseny V, Naresh S, Xu S B, George R, Amnon Y 2010 Appl. Opt. 49 1932

    [4]

    Zeb W B, Wm R B, Brant K, Randy R R, Peter A R 2010 Appl. Opt. 49 213

    [5]

    Yang H J, Jason D, Sven N, Keith R 2005 Appl. Opt. 44 3937

    [6]

    Swinkels B L, Bhattacharya N, Braat J J M 2005 Opt. Lett. 30 2242

    [7]

    Li Z D, Jiang Y S, Sang F, Wang L C, Deng S G, Xin Y, Guo J P 2011 Acta Opt. Sin. 31 144 (in Chinese)[李志栋, 江月松, 桑峰, 王林春, 邓士光, 辛遥, 郭泾平2011光学学报31 144]

    [8]

    Seiichi K, Yasuhiko K 2012 Opt. Rev. 19 376

    [9]

    Qian K M, Li C Q 2000 J. Vib. Eng. 13 136 (in Chinese)[钱克矛, 李川奇2000振动工程学报13 136]

    [10]

    Mao Y W, Tu Y Q, Xiao W, Yang H Y 2012 J. Vib. Shock 31 112 (in Chinese)[毛育文, 涂亚庆, 肖玮, 杨辉跃2012振动与冲击31 112]

    [11]

    Brian J S, Dawn K G, Matthew S W, Mark E F 2005 Opt. Express 13 666

    [12]

    Shi G, Zhang F M, Qu X H, Meng X S 2014 Acta Phys. Sin. 63 184209 (in Chinese)[时光, 张福民, 曲兴华, 孟祥松2014物理学报63 184209]

    [13]

    Glombitza U, Brinkmeyer E 1993 J. Lightwave Technol. 11 1377

    [14]

    Govind P A 2013 Nonlinear Fiber Optics (5th Ed.) (Oxford:Elsevier) p5785

    [15]

    Yusuke K, Fan X Y, Fumihiko I, He Z Y, Kazuo H 2013 J. Lightw. Technol. 31 866

    [16]

    Evan M L, Justin W K, Mark E F, Emily E H 2014 US Patent 105911[2014-07-03]

    [17]

    Xu X K, Liu G D, Liu B G, Chen F D, Zhuang Z T, Gan Y, Lu C 2015 Opt. Eng. 54 074102

  • [1]

    Zheng J 2004 Appl. Opt. 43 4189

    [2]

    Jack A S, Alois S, Lowell H 1999 Appl. Opt. 38 5981

    [3]

    Arseny V, Naresh S, Xu S B, George R, Amnon Y 2010 Appl. Opt. 49 1932

    [4]

    Zeb W B, Wm R B, Brant K, Randy R R, Peter A R 2010 Appl. Opt. 49 213

    [5]

    Yang H J, Jason D, Sven N, Keith R 2005 Appl. Opt. 44 3937

    [6]

    Swinkels B L, Bhattacharya N, Braat J J M 2005 Opt. Lett. 30 2242

    [7]

    Li Z D, Jiang Y S, Sang F, Wang L C, Deng S G, Xin Y, Guo J P 2011 Acta Opt. Sin. 31 144 (in Chinese)[李志栋, 江月松, 桑峰, 王林春, 邓士光, 辛遥, 郭泾平2011光学学报31 144]

    [8]

    Seiichi K, Yasuhiko K 2012 Opt. Rev. 19 376

    [9]

    Qian K M, Li C Q 2000 J. Vib. Eng. 13 136 (in Chinese)[钱克矛, 李川奇2000振动工程学报13 136]

    [10]

    Mao Y W, Tu Y Q, Xiao W, Yang H Y 2012 J. Vib. Shock 31 112 (in Chinese)[毛育文, 涂亚庆, 肖玮, 杨辉跃2012振动与冲击31 112]

    [11]

    Brian J S, Dawn K G, Matthew S W, Mark E F 2005 Opt. Express 13 666

    [12]

    Shi G, Zhang F M, Qu X H, Meng X S 2014 Acta Phys. Sin. 63 184209 (in Chinese)[时光, 张福民, 曲兴华, 孟祥松2014物理学报63 184209]

    [13]

    Glombitza U, Brinkmeyer E 1993 J. Lightwave Technol. 11 1377

    [14]

    Govind P A 2013 Nonlinear Fiber Optics (5th Ed.) (Oxford:Elsevier) p5785

    [15]

    Yusuke K, Fan X Y, Fumihiko I, He Z Y, Kazuo H 2013 J. Lightw. Technol. 31 866

    [16]

    Evan M L, Justin W K, Mark E F, Emily E H 2014 US Patent 105911[2014-07-03]

    [17]

    Xu X K, Liu G D, Liu B G, Chen F D, Zhuang Z T, Gan Y, Lu C 2015 Opt. Eng. 54 074102

  • [1] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统. 物理学报, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [4] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [5] 孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦. 基于单一分光棱镜干涉仪的双通路定量相位显微术. 物理学报, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [6] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [7] 贺寅竹, 赵世杰, 尉昊赟, 李岩. 跨尺度亚纳米分辨的可溯源外差干涉仪. 物理学报, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [8] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系. 物理学报, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [9] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [10] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究. 物理学报, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [11] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [12] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [13] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [14] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [15] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展. 物理学报, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [16] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [17] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [18] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [19] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  5404
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 修回日期:  2016-05-17
  • 刊出日期:  2016-10-05

/

返回文章
返回