搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合结构螺旋超材料对光波前的高效调控

汪肇坤 杨振宇 陶欢 赵茗

引用本文:
Citation:

复合结构螺旋超材料对光波前的高效调控

汪肇坤, 杨振宇, 陶欢, 赵茗

High-efficiency wavefront control with based on helical metamaterials

Wang Zhao-Kun, Yang Zhen-Yu, Tao Huan, Zhao Ming
PDF
导出引用
  • 近年来,超材料和超表面因为一些不同于传统材料的新奇性质一直被广泛研究,而基于超材料或者是超表面的波前控制也是其中的一个热门研究领域.迄今为止,已经提出了很多不同的结构来对反射光和透射光的波前进行调控,在已知的结构中,反射光的波前调控效率已经可以达到较高数值,但是很少有报道能够使用超材料简单高效地调制透射光的波前.本文提出了一种由相同几何结构的左旋和右旋结构复合而成的螺旋超材料.通过使用时域有限差分方法进行仿真,发现这种螺旋结构将会在入射光和透射光之间引入一个可控的相位变化,从而可直接对透射光波前进行调控.仿真结果还表明,该复合结构螺旋超材料在较宽的波长范围内可以达到近64%的透射率.最后通过将该螺旋材料沿着X轴排布成有着连续相位变化的阵列,可以在近红外区域(1.01.4 m)观察到反常折射现象,仿真结果与理论计算得出的反常折射角十分符合.
    Metamaterials or metasurfaces have been widely studied to manipulate the propagation of light by controlling the wavefront. In previous work, more and more structures were designed to study the reflected or the transmitted light. However, as far as we know, it is rarely reported how to efficiency tailor the wavefront, especially for transmitted light. Helical metamaterial, which has a relatively strong coupling effect among the helical nanowires, may provide an alternative to the wavefront control. In this study, a kind of complementary helical metamaterial with a left-handedness and a right-handedness helixes coupled to each other is proposed. The complementary helical metamaterial has a strong circular conversion dichroism, and it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. Using the finite-difference time-domain method, we find that this kind of helix has a high circular polarization conversion in a broadband, which often implies a high efficiency of the transmitted light. Moreover, it is also found that the structure will introduce a controllable phase shift() between the incident and the transmitted light whose polarizations are orthogonal to each other. By calculating the surface current density of the helix, the performance of high circular polarization conversion is explained. Meanwhile, we also find that the phase shift has a linear relationship with the initial angle of the helix(), which is =2. This relationship can be explained exactly by Jones calculus. According to the generalized Snell's law, the refracted beam can have an arbitrary direction by designing a suitable constant gradient of phase discontinuity. And then, by arranging 12 helixes in an array with a constant phase gradient along the X-axis, the phenomenon of anomalous refraction with a high efficiency(64%) is observed in the near infrared range(1.0-1.4 m). The angle of the anomalous refraction is in good agreement with the theoretical value. Compared with the metasurface, the helical metamaterial has a relatively complex structure. But with the development of the nanotechnology, there are several methods that can complete the propagations of nano helical structures, such as the direct laser writing, the glancing angle deposition, and the molecular self-assembly techniques. And by carefully designing the structure parameters of the helix, this kind of complementary helical metamaterial is expected to be an ideal candidate not only for traditional optics but also for biological detection and medical science.
      通信作者: 杨振宇, zyang@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475058)、武汉科学技术资金(批准号:2015010101010001)、深圳基础研究项目基金(批准号:JCYJ20140419131733980)和高性能复杂制造国家重点实验室开放基金(批准号:Kfkt2013-07)资助的课题.
      Corresponding author: Yang Zhen-Yu, zyang@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61475058), the Wuhan Science and Technology Project, China(Grant No. 2015010101010001), the Shenzhen Basic Research Project, China(Grant No. JCYJ20140419131733980), and the Open Fund of the State Key Laboratory of High Performance Complex Manufacturing, China(Grant No. Kfkt2013-07).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Huang L, Chen X, Muehlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [3]

    Zhao Y, Alu A 2013 Nano Lett. 13 1086

    [4]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394

    [5]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [6]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum Electron. 19 4700423

    [7]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [8]

    Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Phys. Rev. B 85 155457

    [9]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [10]

    Shalaev V M, Cai W S, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2004 Science 305 788

    [11]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [13]

    Zheng G X, Muhlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [14]

    Cheng H, Liu Z C, Chen S Q, Tian J G 2015 Adv. Mater. 27 5410

    [15]

    Kaschke J, Blume L, Wu L, Thiel M, Bade K, Yang Z, Wegener M 2015 Adv. Opt. Mater. 3 1411

    [16]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513

    [17]

    Kaschke J, Wegener M 2015 Opt. Lett. 40 3986

    [18]

    Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C 2004 Rev. Sci. Instrum. 75 1089

    [19]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hoegele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 311

    [20]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609

    [21]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867

    [22]

    Luo X G, Qiu T, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R-Rep. 74 351

    [23]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [24]

    Yang Z Y, Zhao M, Lu P X, Lu Y F 2010 Opt. Lett. 35 2588

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Huang L, Chen X, Muehlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [3]

    Zhao Y, Alu A 2013 Nano Lett. 13 1086

    [4]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394

    [5]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [6]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum Electron. 19 4700423

    [7]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [8]

    Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Phys. Rev. B 85 155457

    [9]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [10]

    Shalaev V M, Cai W S, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2004 Science 305 788

    [11]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [13]

    Zheng G X, Muhlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [14]

    Cheng H, Liu Z C, Chen S Q, Tian J G 2015 Adv. Mater. 27 5410

    [15]

    Kaschke J, Blume L, Wu L, Thiel M, Bade K, Yang Z, Wegener M 2015 Adv. Opt. Mater. 3 1411

    [16]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513

    [17]

    Kaschke J, Wegener M 2015 Opt. Lett. 40 3986

    [18]

    Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C 2004 Rev. Sci. Instrum. 75 1089

    [19]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hoegele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 311

    [20]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609

    [21]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867

    [22]

    Luo X G, Qiu T, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R-Rep. 74 351

    [23]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [24]

    Yang Z Y, Zhao M, Lu P X, Lu Y F 2010 Opt. Lett. 35 2588

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [4] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究. 物理学报, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [5] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [6] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [7] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [8] 邓真渝, 翁乐纯, 张冬, 何林李, 章林溪. 熵驱动下柱状高分子刷螺旋结构的研究. 物理学报, 2014, 63(1): 018201. doi: 10.7498/aps.63.018201
    [9] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [10] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [11] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [14] 仝焕平, 章林溪. 受限于圆柱体内半刚性高分子链的螺旋结构转变. 物理学报, 2012, 61(5): 058701. doi: 10.7498/aps.61.058701
    [15] 李俊成, 郭立新, 刘松华. THz频段单面左手材料的设计及仿真研究. 物理学报, 2012, 61(12): 124102. doi: 10.7498/aps.61.124102
    [16] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [17] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [18] 赵延, 相建凯, 李飒, 赵晓鹏. 基于双鱼网结构的可见光波段超材料. 物理学报, 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [19] 闻孺铭, 李凌云, 韩克武, 孙晓玮. 微波超材料隐形结构及其新型快速实验方案. 物理学报, 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [20] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
计量
  • 文章访问数:  5257
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-04
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-11-05

/

返回文章
返回