搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单模光纤中用声波导布里渊散射同时测量温度和应变

邓春雨 侯尚林 雷景丽 王道斌 李晓晓

引用本文:
Citation:

单模光纤中用声波导布里渊散射同时测量温度和应变

邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓

Simultaneous measurement on strain and temperature via guided acoustic-wave Brillouin scattering in single mode fibers

Deng Chun-Yu, Hou Shang-Lin, Lei Jing-Li, Wang Dao-Bin, Li Xiao-Xiao
PDF
导出引用
  • 为解决布里渊频移同时受温度和应变影响的交叉敏感问题,提出了用声波导布里渊散射同时检测温度和应变的传感器设计方案.根据声波导布里渊散射中不同声模对温度和应变的敏感度不同,设计特定的抽运光和斯托克斯光频率,使检测的频谱图上呈现多峰放大现象.再根据温度和应变对声模特征频率的影响,区分出光纤所受温度和应变值.模拟结果表明标准SMF-28光纤中,R02模对应的温度敏感度比TR25模对应的温度敏感度低0.86%,R02模对应的应变敏感度比TR25模对应的应变敏感度高54.1%.由于R02模和TR25模对应温度敏感度近似相同,而两者对应应变敏感度相差较大,可以有效地区分出温度和应变对布里渊频移的影响,从而达到温度应变同时测量的目的.
    During the last decade, fiber sensor has drawn extensive attention due to its flexible, insulating, and readily operating in most measurement environment. But generally, fiber sensor is sensitive to more than one environmental parameter at the same time, so the cross sensitivity limits the application of the sensor. In the present work, a novel design scheme of sensing simultaneously temperature and strain via guided acoustic-wave Brillouin scattering is proposed for resolving the cross sensitivity induced by temperature and strain in single mode fibers. In the guided acoustic-wave Brillouin scattering which occurs due to the interaction between two optical co-propagating waves and the transverse acoustic wave in optical fiber, multi spectrum peaks appear when the frequencies of pump and Stokes are appropriate. Brillouin frequency shift is dependent on elastic property of fiber material such as sound velocity, density, Young's modulus, etc. and these elastic properties are influenced by the surroundings. So Brillouin spectrum changes with temperature and strain. Because different acoustic modes of guided acoustic-wave Brillouin scattering have different sensitivities to temperature and strain, characteristic frequencies of different acoustic modes shift at different levels. Then the influences of temperature and strain on elastic property of fiber material, and the relationship between material properties and characteristic frequency of each acoustic mode can be worked out, therefore the temperature and strain can be calculated by the different influences of temperature and strain on each acoustic mode. The simulation results indicate that the temperature sensitivity of R02 mode is 0.86% lower than that of TR25 in the SMF-28 fiber, but the strain sensitivity of R02mode is 54.1% higher than that of TR25. Temperature sensitivity of R02 is approximately equal to that of TR25, but strain sensitivity of R02 is obviously diferent from that of TR25. So the influences of temperature and strain on Brillouin frequency shift can be effectively distinguished, thereby simultaneous measurements of temperature and strain can be realized by guided acoustic-wave Brillouin scattering.
      通信作者: 侯尚林, houshanglin@163.com
    • 基金项目: 国家自然科学基金(批准号:61665005,61167005,61367007)和甘肃省自然科学基金(批准号:1112RJZA018,1112RJZA017)资助的课题.
      Corresponding author: Hou Shang-Lin, houshanglin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61665005, 61167005, 61367007) and the Natural Science Foundation of Gansu Province, China (Grant Nos. 1112RJZA018, 1112RJZA017).
    [1]

    Chiao R Y, Townes C H, Stoicheff B P 1964 Phys. Rev. Lett. 12 592

    [2]

    Garmire E, Townes C H 1964 Appl. Phys. Lett. 5 84

    [3]

    Hou S L, Xue L M, Li S P, Liu Y J, Xu Y Z 2012 Acta Phys. Sin. 61 134206 (in Chinese)[侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊2012物理学报 61 134206]

    [4]

    Zhang C, Rao Y J, Jia X H, Chang L, Ran Z L 2010 Acta Phys. Sin. 59 5523 (in Chinese)[张超, 饶云江, 贾新鸿, 苌亮, 冉曾令2010物理学报 59 5523]

    [5]

    Bao X, Webb D J, Jackson D A 1994 Opt. Lett. 19 141

    [6]

    Parker T R, Farhadiroushan M, Handerek V A, Rogers A J 1997 Opt. Lett. 22 787

    [7]

    Lee C C, Chiang P W, Chi S 2001 IEEE Photon. Tech. Lett. 13 1094

    [8]

    Smith J, Brown A, Demerchant M, Bao X Y 1999 Appl. Opt. 38 5372

    [9]

    Kee H H, Lees G P, Newson T P 2000 Opt. Lett. 25 695

    [10]

    Maughan S M, Kee H H, Newson T P 2001 Meas. Sci. Technol. 12 834

    [11]

    Zou L F, Bao X Y, Afshar V S, Chen L 2004 Opt. Lett. 29 1485

    [12]

    Zou W W, He Z Y, Kishi M, Hotate K 2007 Opt. Lett. 32 600

    [13]

    Zou W W, He Z Y, Hotate K 2008 J. Lightwave Technol. 26 1854

    [14]

    Grace O D, Goodman R R 1966 J. Acoust. Soc. Am. 39 173

    [15]

    Zhang W Y, Hou S L, Liu Y J, Lei J L, Li X X, Wang D B, Wu G, Xu Y Z 2015 Acta Phot. Sin. 44 506005 (in Chinese)[张雯豫, 侯尚林, 刘延君, 雷景丽, 李晓晓, 王道斌, 武刚, 徐永钊2015光子学报 44 506005]

    [16]

    Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. B 31 5244

    [17]

    Hou S L, Xue L M, Wang J W, Liu Y J, Wang D B, Xu Y Z 2013 Chin. J. Lumin. 34 500 (in Chinese)[侯尚林, 薛乐梅, 王菊巍, 刘延君, 王道斌, 徐永钊2013发光学报 34 500]

    [18]

    Shiraki K, Ohashi M 1992 IEEE Photon. Tech. Lett. 4 1177

    [19]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报 59 6219]

    [20]

    Li H L, Zhang W, Huang Y D, Peng J D 2011 Chin. Phys. B 20 104211

    [21]

    Beugnot J C, Laude V 2012 Phys. Rev. B 86 224304

    [22]

    Laude V, Beugnot J C 2013 AIP Adv. 3 042109

    [23]

    Wang J, Zhu Y H, Zhang R, Gauthier D J 2011 Opt. Express 19 5339

    [24]

    Ohashi M, Shibata N, Shirakai K 1992 Electron. Lett. 28 900

    [25]

    Tanaka Y, Ogusu K 1998 IEEE Photon. Tech. Lett. 10 1769

    [26]

    Horiguchi T, Kurashima T, Tateda M 1989 IEEE Photon. Tech. Lett. 1 107

    [27]

    Tanaka Y, Ogusu K 1999 IEEE Photon. Tech. Lett. 11 865

  • [1]

    Chiao R Y, Townes C H, Stoicheff B P 1964 Phys. Rev. Lett. 12 592

    [2]

    Garmire E, Townes C H 1964 Appl. Phys. Lett. 5 84

    [3]

    Hou S L, Xue L M, Li S P, Liu Y J, Xu Y Z 2012 Acta Phys. Sin. 61 134206 (in Chinese)[侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊2012物理学报 61 134206]

    [4]

    Zhang C, Rao Y J, Jia X H, Chang L, Ran Z L 2010 Acta Phys. Sin. 59 5523 (in Chinese)[张超, 饶云江, 贾新鸿, 苌亮, 冉曾令2010物理学报 59 5523]

    [5]

    Bao X, Webb D J, Jackson D A 1994 Opt. Lett. 19 141

    [6]

    Parker T R, Farhadiroushan M, Handerek V A, Rogers A J 1997 Opt. Lett. 22 787

    [7]

    Lee C C, Chiang P W, Chi S 2001 IEEE Photon. Tech. Lett. 13 1094

    [8]

    Smith J, Brown A, Demerchant M, Bao X Y 1999 Appl. Opt. 38 5372

    [9]

    Kee H H, Lees G P, Newson T P 2000 Opt. Lett. 25 695

    [10]

    Maughan S M, Kee H H, Newson T P 2001 Meas. Sci. Technol. 12 834

    [11]

    Zou L F, Bao X Y, Afshar V S, Chen L 2004 Opt. Lett. 29 1485

    [12]

    Zou W W, He Z Y, Kishi M, Hotate K 2007 Opt. Lett. 32 600

    [13]

    Zou W W, He Z Y, Hotate K 2008 J. Lightwave Technol. 26 1854

    [14]

    Grace O D, Goodman R R 1966 J. Acoust. Soc. Am. 39 173

    [15]

    Zhang W Y, Hou S L, Liu Y J, Lei J L, Li X X, Wang D B, Wu G, Xu Y Z 2015 Acta Phot. Sin. 44 506005 (in Chinese)[张雯豫, 侯尚林, 刘延君, 雷景丽, 李晓晓, 王道斌, 武刚, 徐永钊2015光子学报 44 506005]

    [16]

    Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. B 31 5244

    [17]

    Hou S L, Xue L M, Wang J W, Liu Y J, Wang D B, Xu Y Z 2013 Chin. J. Lumin. 34 500 (in Chinese)[侯尚林, 薛乐梅, 王菊巍, 刘延君, 王道斌, 徐永钊2013发光学报 34 500]

    [18]

    Shiraki K, Ohashi M 1992 IEEE Photon. Tech. Lett. 4 1177

    [19]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报 59 6219]

    [20]

    Li H L, Zhang W, Huang Y D, Peng J D 2011 Chin. Phys. B 20 104211

    [21]

    Beugnot J C, Laude V 2012 Phys. Rev. B 86 224304

    [22]

    Laude V, Beugnot J C 2013 AIP Adv. 3 042109

    [23]

    Wang J, Zhu Y H, Zhang R, Gauthier D J 2011 Opt. Express 19 5339

    [24]

    Ohashi M, Shibata N, Shirakai K 1992 Electron. Lett. 28 900

    [25]

    Tanaka Y, Ogusu K 1998 IEEE Photon. Tech. Lett. 10 1769

    [26]

    Horiguchi T, Kurashima T, Tateda M 1989 IEEE Photon. Tech. Lett. 1 107

    [27]

    Tanaka Y, Ogusu K 1999 IEEE Photon. Tech. Lett. 11 865

计量
  • 文章访问数:  6126
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-08-15
  • 刊出日期:  2016-12-05

/

返回文章
返回