搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型全腔输出半透明阴极相对论磁控管的理论和数值研究

杨温渊 董烨 董志伟

引用本文:
Citation:

新型全腔输出半透明阴极相对论磁控管的理论和数值研究

杨温渊, 董烨, 董志伟

Theoretical and numerical investigations of the novel relativistic magnetron using all-cavity output and semi-transparent cathode

Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei
PDF
导出引用
  • 为减小器件的体积和重量,提高器件的实用性,在轴向渐变输出结构半透明阴极相对论磁控管的基础上,提出了全腔耦合输出结构半透明阴极相对论磁控管,并对其进行了理论分析和数值模拟.采用全腔输出结构后,器件互作用区径向半径由10.5 cm降到6.6 cm,轴向长度由大于40 cm降到小于30 cm,器件尺寸显著减小.通过对输出结构的参数优化,在注入电子束电压和电流分别约为395 kV和5.6 kA、外加磁场为4.75 kGs(1 Gs=10-4 T)时,模拟在S波段获得了效率约50%的微波输出,输出功率达到1.15 GW,模式更加纯净.同时还分析了耦合孔的长度、宽度和深度以及输出波导的宽度和短路面起始位置等参数对输出性能的影响规律.
    Relativistic magnetron is a kind of compact cross-field high power microwave source. It has the virtues of wide frequency tunability and ability to operate with relative lower external magnetic field. To improve the compactness and reduce the size and weight of the relativistic magnetron further, a novel relativistic magnetron using all-cavity output and semi-transparent cathode is investigated theoretically and numerically. By using the all-cavity output structure, the radial dimension is reduced markedly (from 10.5 cm to 6.6 cm) and the axial dimension is also shortened considerably (from larger than 40 cm to less than 30 cm). Since the radiation fields in the interaction cavity are coupled through the coupling hole to the output fan waveguide, the cutoff frequencies of the fundamental mode and three higher order modes in the fan waveguide with different outer radii are calculated. The calculation results show that the mode separation is wide enough for the single mode operation on the fundamental mode. And by using the semi-transparent cathode, the high output efficiency can be obtained and the output characteristics are insensitive to the depth and width of each cathode slot. To verify the characteristic of the proposed magnetron, numerical simulations are carried out by using the three-dimensional particle-in-cell code. After careful optimization, simulations show that with a beam voltage of 395 kV and beam current of 5.6 kA, 1.15 GW output microwave with an efficiency of about 50% can be obtained at S-band with purer mode. The corresponding applied magnetic field is 4.75 kGs (1 Gs=1-4 T). In a relatively large range, both radiation power and the optimal magnetic field increase with the beam voltage. But the output efficiency keeps almost unchanged. The effects of the depth, width and length of the coupling hole, width of the fan waveguide and the distance from the beginning position of the fan waveguide to the coupling hole center Lsc on the output characteristics are also analyzed. Simulation results show that when the dimension of the coupling hole is small, the output power is low. But there is no mode competition and the device works on the up mode. With the increase of the coupling hole, the output power increases accordingly. When the coupling hole is large enough, the mode competition between the up mode and /3 mode becomes so serious that the mode cannot win any more. At the same time, the output power decreases markedly. There also exist optimal values of both the fan width and the beginning position of the fan waveguide (Lsc) for maximal output power.
      通信作者: 杨温渊, yang_wenyuan@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11305015,11475155)和中国工程物理研究院科学技术发展基金(批准号:2015B0402091)资助的课题.
      Corresponding author: Yang Wen-Yuan, yang_wenyuan@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305015, 11475155) and the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2015B0402091).
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York:Institute of Electrical and Electronics Engineer, Inc.) pp56-60

    [2]

    Liu M Q, Liu C L, Galbreath D, Michel C, Prasad S, Fuks M I, Schamiloglu E 2011 J. Appl. Phys. 110 033304

    [3]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [4]

    Bosman H L, Fuks M I, Prasad S, Schamiloglu E 2006 IEEE Trans. Plas. Sci. 34 606

    [5]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plas. Sci. 38 1302

    [6]

    Jones M C, Neculaes V B, Lau Y Y, Gilgenbach R M, White W M, Hoff B W, Jordan N M 2005 Appl. Phys. Lett. 87 081501

    [7]

    Fuks M I, Schamiloglu E 2005 Phys. Rev. Lett. 95 205101

    [8]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [9]

    Hoff B W, Greenwood A D, Mardahl P J, M D Haworth 2012 IEEE Trans. Plas. Sci. 40 3046

    [10]

    Fleming T P, Mardahl P J, Bowers L A, Cartwright K L 2006 Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium Arlington Virginia, USA, May 14-18, 2006 p401

    [11]

    Prasad S, Roybal M, Buchenauer C J, Prestwich K, Fuks M I, Schamiloglu E 2009 IEEE Pulsed Power Conference Washington, DC, USA, June 27-July 1, 2009 p81

    [12]

    Yamazaki H, Jiang W 2007 Proceedings of ITC/ISHW Toki, Japan, October 15-19, 2007 p1

    [13]

    Su L, Li T M, Li J Y 2011 High Power Laser and Particle Beams 23 3039 (in Chinese)[苏黎, 李天明, 李家胤2011强激光与粒子束 23 3039]

    [14]

    Li W, Liu Y, Zhang J, Shu T, Yang H, Fan Y, Yuan C 2012 Rev. Sci. Instrum. 83 024707

    [15]

    Yang W, Dong, Z, Yang Y, Dong Y 2014 IEEE Trans. Plas. Sci. 42 3458

    [16]

    Greenwood A D 2006 US Patent 7106004[2006-9-12]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing:Publishing House of Electronics Industry) pp295-297(in Chinese)[张克潜, 李德杰2001微波与光电子学中的电磁理论(第1版) (北京:电子工业出版社)第295–297页]

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York:Institute of Electrical and Electronics Engineer, Inc.) pp56-60

    [2]

    Liu M Q, Liu C L, Galbreath D, Michel C, Prasad S, Fuks M I, Schamiloglu E 2011 J. Appl. Phys. 110 033304

    [3]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [4]

    Bosman H L, Fuks M I, Prasad S, Schamiloglu E 2006 IEEE Trans. Plas. Sci. 34 606

    [5]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plas. Sci. 38 1302

    [6]

    Jones M C, Neculaes V B, Lau Y Y, Gilgenbach R M, White W M, Hoff B W, Jordan N M 2005 Appl. Phys. Lett. 87 081501

    [7]

    Fuks M I, Schamiloglu E 2005 Phys. Rev. Lett. 95 205101

    [8]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [9]

    Hoff B W, Greenwood A D, Mardahl P J, M D Haworth 2012 IEEE Trans. Plas. Sci. 40 3046

    [10]

    Fleming T P, Mardahl P J, Bowers L A, Cartwright K L 2006 Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium Arlington Virginia, USA, May 14-18, 2006 p401

    [11]

    Prasad S, Roybal M, Buchenauer C J, Prestwich K, Fuks M I, Schamiloglu E 2009 IEEE Pulsed Power Conference Washington, DC, USA, June 27-July 1, 2009 p81

    [12]

    Yamazaki H, Jiang W 2007 Proceedings of ITC/ISHW Toki, Japan, October 15-19, 2007 p1

    [13]

    Su L, Li T M, Li J Y 2011 High Power Laser and Particle Beams 23 3039 (in Chinese)[苏黎, 李天明, 李家胤2011强激光与粒子束 23 3039]

    [14]

    Li W, Liu Y, Zhang J, Shu T, Yang H, Fan Y, Yuan C 2012 Rev. Sci. Instrum. 83 024707

    [15]

    Yang W, Dong, Z, Yang Y, Dong Y 2014 IEEE Trans. Plas. Sci. 42 3458

    [16]

    Greenwood A D 2006 US Patent 7106004[2006-9-12]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing:Publishing House of Electronics Industry) pp295-297(in Chinese)[张克潜, 李德杰2001微波与光电子学中的电磁理论(第1版) (北京:电子工业出版社)第295–297页]

  • [1] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究. 物理学报, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [2] 杨温渊, 董烨, 董志伟. 全腔输出相对论磁控管输出模式转换结构的理论设计和数值模拟. 物理学报, 2018, 67(18): 188401. doi: 10.7498/aps.67.20180358
    [3] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究. 物理学报, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [4] 成会, 谢鸿全, 刘迎辉, 李正红, 吴洋. S波段四腔强流相对论速调管的设计和实验研究. 物理学报, 2014, 63(1): 018402. doi: 10.7498/aps.63.018402
    [5] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频. 物理学报, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [6] 陈永东, 吴洋, 谢鸿全, 李正红, 周自刚. 相对论速调管中间腔与调制电子束间的非线性互作用. 物理学报, 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [7] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [8] 史迪夫, 王弘刚, 李伟, 钱宝良. 扇形腔旭日型磁控管结构的理论分析与数字模拟. 物理学报, 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [9] 王兆军, 吕国梁, 朱春花, 霍文生. 相对论简并电子气体的磁化. 物理学报, 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [10] 李伟, 刘永贵. 类磁控管结构的理论分析. 物理学报, 2012, 61(2): 021103. doi: 10.7498/aps.61.021103
    [11] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究. 物理学报, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [12] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究. 物理学报, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [13] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用. 物理学报, 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [14] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [15] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究. 物理学报, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [16] 黄 华, 孟凡宝, 范植开, 李正红, 方 向. 相对论速调管三轴提取腔的分析与设计. 物理学报, 2006, 55(10): 5344-5348. doi: 10.7498/aps.55.5344
    [17] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究. 物理学报, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [18] 陶必修, 陶必友. 广义相对论“星系长城”. 物理学报, 1996, 45(7): 1091-1099. doi: 10.7498/aps.45.1091
    [19] 艾克聪, 西门纪业, 周立伟. 电磁复合聚焦—偏转球面阴极透镜的相对论象差理论. 物理学报, 1986, 35(9): 1210-1222. doi: 10.7498/aps.35.1210
    [20] 张宗燧. 库伦作用的相对论性. 物理学报, 1951, 8(2): 123-130. doi: 10.7498/aps.8.123
计量
  • 文章访问数:  4142
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2016-09-06
  • 刊出日期:  2016-12-05

/

返回文章
返回