搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于领结型多孔光纤的双芯太赫兹偏振分束器

汪静丽 刘洋 钟凯

引用本文:
Citation:

基于领结型多孔光纤的双芯太赫兹偏振分束器

汪静丽, 刘洋, 钟凯

Dual-core terahertz polarization splitter based on porous fibers with near-tie units

Wang Jing-Li, Liu Yang, Zhong Kai
PDF
导出引用
  • 领结型多孔光纤具有高双折射的特性,本文基于此设计了一种新型的双芯太赫兹(THz)偏振分束器,采用调整结构法实现了折射率反转匹配耦合,达到偏振分离.仿真结果表明:该偏振分束器在0.5–2.5 THz频率范围内均可实现偏振分离,最小分离长度仅为0.428 cm,且在整个频率范围内分离长度不超过2.5 cm.在2.3 THz,x,y两偏振模的吸收损耗均小于0.35 dB;消光比高达22.9和19.2 dB.此外,与填充法实现折射率反转匹配耦合的双芯THz偏振分束器进行比较,本文设计的偏振分束器实现简单,运行的频率范围更宽,分离长度更短,吸收损耗更低.
    Terahertz (THz) radiation, which is defined as the electromagnetic wave with a frequency ranging from 0.1 THz to 10 THz, has attracted widespread attention in recent years because of its unique possibilities in many fields. High-performance THz polarization splitter, a key device in THz manipulation, is of great significance for studying the THz devices. In the present paper, a novel dual-core THz polarization splitter is proposed, which is based on porous fiber with near-tie units. The introduction of near-tie units into the fiber core can enhance asymmetry to realize high mode birefringence. And the results show that the porous THz fiber exhibits high birefringence at a level of 10-2 over a wide frequency range. An index converse matching coupling (ICMC) method, which exhibits several advantages (such as short splitting length, high extinction ratio, low loss, and broad operation bandwidth), is used to allow for the coupling of one polarization mode within a broad operation band, while the coupling of the other polarization component is effectively inhibited. The splitting length is equal to one coupling length of x- or y-polarization component for which inter-core coupling occurs, and short splitting length means low transmission loss. Unlike the reported filling method, an adjusting structure method is proposed in the paper to satisfy the condition of index converse matching coupling. The full vector finite element method (FEM), which is based on the variational principle and the subdivision interpolation, is used to analyze the guiding properties of the proposed THz polarization splitter. The FEM is a widely used numerical method in physical modeling and simulation. Simulation results show that the THz polarization splitter operates within a wide frequency range of 0.5-2.5 THz. The splitting length does not exceed 2.5 cm in the whole frequency range and the minimum is only 0.428 cm. At 2.3 THz, the material absorption losses of x- and y-polarization are both less than 0.35 dB, and the extinction ratios for x- and y-polarization are 2.9 and 19.2 dB, respectively. Moreover, by comparing with a THz polarization splitter with filling method, the proposed THz polarization with adjusting structure method is easier to realize, the operating frequency range is wider, the splitting length is shorter, and the material absorption loss is lower. Finally, we note that the fabrication of such THz porous fiber designs could be realized by several methods, such as a capillary stacking technique, a polymer casting technique, a hole drilling technique, etc.
      通信作者: 汪静丽, jlwang@njupt.edu.cn
    • 基金项目: 光电信息技术教育重点实验室(天津大学)开放基金(批准号:2014KFKT003)、国家自然科学基金(批准号:61571237)、国家自然科学基金青年科学基金(批准号:61405096)、区域光纤通信网与新型光通信系统国家重点实验室开放基金资助项目(批准号:2015GZKF03006)和江苏省光通信工程技术研究中心资助项目(批准号:ZSF0201)资助的课题.
      Corresponding author: Wang Jing-Li, jlwang@njupt.edu.cn
    • Funds: Project supported by the Key laboratory of Opto-electronic Information Technology, Ministry of Education(Tianjin University), China (Grant No. 2014KFKT003), the National Natural Science Foundation of China (Grant No. 61571237), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61405096), the Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, China (Grant No. 2015GZKF03006), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0201).
    [1]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693

    [2]

    Yong L, Han K, Lee B, Jung J 2003 Opt. Express 11 3359

    [3]

    Florous N, Saitoh K, Koshiba M 2005 Opt. Express 13 7365

    [4]

    Zhang S, Zhang W, Geng P, Li X, Ruan J 2011 Appl. Opt. 50 6576

    [5]

    Jiang H, Wang E, Zhang J, Hu L, Mao Q, Li Q 2014 Opt. Express 22 30461

    [6]

    Mao D, Guan C, Yuan L 2010 App. Opt. 49 3748

    [7]

    Saitoh K, Sato Y, Koshiba M 2004 Opt. Express 12 3940

    [8]

    Wen K, Wang R, Wang J Y, Li J H 2008 Chinese Journal of Lasers 35 1962 (in Chinese)[文科, 王荣, 汪井源, 李建华2008中国激光35 1962]

    [9]

    Bai J J, Wang C H, Hou Y, Fan F, Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese)[白晋军, 王昌辉, 侯宇, 范飞, 常胜江2012物理学报61 108701]

    [10]

    Jiang Z W, Bai J J, Hou Y, Bai X H, Chang S J 2013 Acta Phys. Sin. 62 028702 (in Chinese)[姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江2013物理学报62 028702]

    [11]

    Li S S, Zhang H, Bai J, Liu W 2014 IEEE Photonics Technol. Lett. 26 1399

    [12]

    Zhu Y F 2014 Ph. D. Dissertation (ZhenJiang:Jiangsu University) (in Chinese)[祝远锋2014博士学位论文(镇江:江苏大学)]

    [13]

    Hou Y 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[侯宇2013博士学位论文(天津:南开大学)]

    [14]

    Wang C H 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[王昌辉2013博士学位论文(天津:南开大学)]

    [15]

    Wang J L, Yao J, Chen H, Zhong K, Li Z 2011 J. Opt. 13 994

    [16]

    Wang J L 2011 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[汪静丽2011博士学位论文(天津:天津大学)]

    [17]

    Ma J R 2007 M. S. Thesis(Hebei:Yanshan University) (in Chinese)[马景瑞2007硕士学位论文(河北:燕山大学)]

  • [1]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693

    [2]

    Yong L, Han K, Lee B, Jung J 2003 Opt. Express 11 3359

    [3]

    Florous N, Saitoh K, Koshiba M 2005 Opt. Express 13 7365

    [4]

    Zhang S, Zhang W, Geng P, Li X, Ruan J 2011 Appl. Opt. 50 6576

    [5]

    Jiang H, Wang E, Zhang J, Hu L, Mao Q, Li Q 2014 Opt. Express 22 30461

    [6]

    Mao D, Guan C, Yuan L 2010 App. Opt. 49 3748

    [7]

    Saitoh K, Sato Y, Koshiba M 2004 Opt. Express 12 3940

    [8]

    Wen K, Wang R, Wang J Y, Li J H 2008 Chinese Journal of Lasers 35 1962 (in Chinese)[文科, 王荣, 汪井源, 李建华2008中国激光35 1962]

    [9]

    Bai J J, Wang C H, Hou Y, Fan F, Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese)[白晋军, 王昌辉, 侯宇, 范飞, 常胜江2012物理学报61 108701]

    [10]

    Jiang Z W, Bai J J, Hou Y, Bai X H, Chang S J 2013 Acta Phys. Sin. 62 028702 (in Chinese)[姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江2013物理学报62 028702]

    [11]

    Li S S, Zhang H, Bai J, Liu W 2014 IEEE Photonics Technol. Lett. 26 1399

    [12]

    Zhu Y F 2014 Ph. D. Dissertation (ZhenJiang:Jiangsu University) (in Chinese)[祝远锋2014博士学位论文(镇江:江苏大学)]

    [13]

    Hou Y 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[侯宇2013博士学位论文(天津:南开大学)]

    [14]

    Wang C H 2013 Ph. D. Dissertation (Tianjin:Nankai University) (in Chinese)[王昌辉2013博士学位论文(天津:南开大学)]

    [15]

    Wang J L, Yao J, Chen H, Zhong K, Li Z 2011 J. Opt. 13 994

    [16]

    Wang J L 2011 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[汪静丽2011博士学位论文(天津:天津大学)]

    [17]

    Ma J R 2007 M. S. Thesis(Hebei:Yanshan University) (in Chinese)[马景瑞2007硕士学位论文(河北:燕山大学)]

  • [1] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [3] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [5] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [6] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [7] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [8] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [11] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [12] 李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江. 隔行分层填充的太赫兹超高双折射多孔光纤. 物理学报, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [13] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器. 物理学报, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [14] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [15] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [16] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [17] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [18] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [19] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [20] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
计量
  • 文章访问数:  4770
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-01
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-01-20

/

返回文章
返回