搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米孪晶超硬材料的高压合成

徐波 田永君

引用本文:
Citation:

纳米孪晶超硬材料的高压合成

徐波, 田永君

High pressure synthesis of nanotwinned ultrahard materials

Xu Bo, Tian Yong-Jun
PDF
导出引用
  • 超硬材料研究有两个重要难题一直备受关注:一是建立晶体宏观性能硬度与微观电子结构参数的定量关联,指导新型超硬晶体的设计;二是发现改进超硬材料综合性能(硬度、韧性和稳定性)的基本原理和技术途径,合成出综合性能更加优异的高性能超硬材料.首先从同时联系晶体硬度和电子结构的化学键出发,提出了共价晶体的压痕硬度为晶体中化学键对压头压入过程的综合阻抗的基本假设,建立了共价晶体硬度的微观模型并推广至多晶共价材料.在多晶硬度模型指导下,在高温高压条件下成功地合成出了纳米孪晶结构的立方氮化硼和金刚石块材,实现了硬度、韧性及热稳定性这三大工具材料性能指标的同时提高.另外,澄清了关于压痕硬度测量的长期争论.本文的研究为研发高性能超硬材料打开了一条新的技术途径,有望带来机械加工业和高压科学领域的新变革.
    In this review, we present our recent research progress in superhard materials, with specially focusing on two topics. One topic is to understand hardness microscopically and establish the quantitative relationship between hardness and atomic parameters of crystal, which can be used to guide the design of novel superhard crystals. The other topic is to identify the fundamental principle and technological method to enhance the comprehensive performances (i.e., hardness, fracture toughness, and thermal stability) of superhard materials, and to synthesize high-performance superhard materials. Starting from the chemical bonds associated with crystal hardness and electronic structure, we propose a microscopic understanding of the indentation hardness as the combined resistance of chemical bonds in a material to indentation. Under this assumption, we establish the microscopic hardness model of covalent single crystals and further generalize it to polycrystalline materials. According to the polycrystalline hardness model, we successfully synthesize nanotwinned cubic boron nitride and diamond bulks under high pressure and high temperature. These materials exhibit simultaneous improvements in hardness, fracture toughness, and thermal stability. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement. Our research points out a new direction for developing the high-performance superhard materials, and promises innovations in both machinery processing industry and high pressure science.
      通信作者: 田永君, fhcl@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51525205,51421091,51332005)和河北省杰出青年基金(批准号:E2014203150)资助的课题.
      Corresponding author: Tian Yong-Jun, fhcl@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51525205, 51421091, 51332005) and the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (Grant No. E2014203150).
    [1]

    Kanyanta V 2016 Hard, Superhard and Ultrahard Materials:An Overview in:Kanyanta V (Ed.) Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials (Cham:Springer International Publishing) p1

    [2]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [3]

    Wentorf R H 1957 J. Chem. Phys. 26 956

    [4]

    Westraadt J E, Sigalas I, Neethling J H 2015 Int. J. Refract. Met. Hard Mater. 48 286

    [5]

    Brookes C A, Brookes E J 1991 Diamond Relat. Mater. 1 13

    [6]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [7]

    Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R, Solozhenko V, Zhao Y 2004 Nat. Mater. 3 576

    [8]

    Chaudhri M M, Lim Y Y 2005 Nat. Mater. 4 4

    [9]

    Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y 2014 Nature 510 250

    [10]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [11]

    Simunek A, Vackar J 2006 Phys. Rev. Lett. 96 085501

    [12]

    Li K Y, Wang X T, Zhang F F, Xue D F 2008 Phys. Rev. Lett. 100 235504

    [13]

    Dubrovinskaia N, Solozhenko V L, Miyajima N, Dmitriev V, Kurakevych O O, Dubrovinsky L 2007 Appl. Phys. Lett. 90 101912

    [14]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [15]

    Dubrovinskaia N, Dub S, Dubrovinsky L 2006 Nano Lett. 6 824

    [16]

    Solozhenko V L, Kurakevych O O, Le Godec Y 2012 Adv. Mater. 24 1540

    [17]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L M, Wen B, He J, Liu Z 2013 Nature 493 385

    [18]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [19]

    Veprek S 2013 J. Vac. Sci. Technol. A 31 050822

    [20]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93

    [21]

    Zhao Z, Xu B, Tian Y 2016 Annu. Rev. Mater. Res. 46 383

    [22]

    Yeung M T, Mohammadi R, Kaner R B 2016 Annu. Rev. Mater. Res. 46 465

    [23]

    Teter D M 1998 MRS Bull. 23 22

    [24]

    Liu A Y, Cohen M L 1989 Science 245 841

    [25]

    Gilman J J 1973 Hardness–A Strength Microprobe in:Westbrook J H, Conrad H (Ed.) The Science of Hardness Testing and its Research Applications (Metals Park:American Society for Metals)

    [26]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [27]

    Sangiovanni D G, Hultman L, Chirita V 2011 Acta Mater. 59 2121

    [28]

    Ivanovskii A L 2012 Prog. Mater. Sci. 57 184

    [29]

    Guo X, Li L, Liu Z, Yu D, He J, Liu R, Xu B, Tian Y, Wang H T 2008 J. Appl. Phys. 104 023503

    [30]

    Ceder G 1998 Science 280 1099

    [31]

    Li C, Li J C, Jiang Q 2010 Solid State Commun. 150 1818

    [32]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713

    [33]

    Woodley S M, Catlow R 2008 Nat. Mater. 7 937

    [34]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [35]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [36]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [37]

    Lonie D C, Zurek E 2011 Comput. Phys. Commun. 182 372

    [38]

    Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101

    [39]

    Hall E O 1951 Proc. Phys. Soc. London B 64 747

    [40]

    Petch N J 1953 J. Iron Steel Ins. 174 25

    [41]

    Yip S 2004 Nat. Mater. 3 11

    [42]

    Tse J S, Klug D D, Gao F M 2006 Phys. Rev. B 73 140102

    [43]

    Halperin W P 1986 Rev. Mod. Phys. 58 533

    [44]

    Khan M A M, Kumar S, Ahamed M 2015 Mater. Sci. Semicond. Process. 30 169

    [45]

    Chang Y K, Hsieh H H, Pong W F, Tsai M H, Chien F Z, Tseng P K, Chen L C, Wang T Y, Chen K H, Bhusari D M, Yang J R, Lin S T 1999 Phys. Rev. Lett. 82 5377

    [46]

    Gerberich W W, Mook W M, Perrey C R, Carter C B, Baskes M I, Mukherjee R, Gidwani A, Heberlein J, McMurry P H, Girshick S L 2003 J. Mech. Phys. Solids. 51 979

    [47]

    Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F, Richter A 2005 Appl. Phys. Lett. 87 083106

    [48]

    Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H, Bi Y, Leng Y, He D W 2015 Appl. Phys. Lett. 106 121901

    [49]

    Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N, Hirao M, Ledbetter H 2013 Nat. Commun. 4 2343

    [50]

    Sumiya H, Harano K 2012 Diamond Relat. Mater. 24 44

    [51]

    Sumiya H, Harano K, Irifune T 2008 Rev. Sci. Instrum. 79 056102

    [52]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [53]

    Sumiya H, Irifune T 2007 J. Mater. Res. 22 2345

    [54]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [55]

    Lu L, Shen Y F, Chen X H, Qian L H, Lu K 2004 Science 304 422

    [56]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [57]

    Shan Z W, Lu L, Minor A M, Stach E A, Mao S X 2008 JOM 60 71

    [58]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 141

    [59]

    Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903

    [60]

    Hu S L, Yang J L, Liu W, Dong Y G, Cao S R, Liu J 2011 J. Solid State Chem. 184 1598

    [61]

    Yang C C, Li S 2008 J. Phys. Chem. C 112 1423

    [62]

    Li B, Sun H, Chen C 2014 Nat. Commun. 5 4965

    [63]

    Li B, Sun H, Chen C 2016 Phys. Rev. Lett. 117 116103

    [64]

    Meyer E 1908 Z. Ver. Dtsch. Ing. 52 645

    [65]

    Xu B, Tian Y J 2015 J. Phys. Chem. C 119 5633

    [66]

    Luo X, Liu Z, Xu B, Yu D, Tian Y, Wang H T, He J 2010 J. Phys. Chem. C 114 178501

    [67]

    Roundy D, Cohen M 2001 Phys. Rev. B 64 212103

    [68]

    Jensen C P, Jorgensen J F, Garnaes J, Picotto G B, Gori G 1998 J. Test. Eval. 26 532

    [69]

    Nix W D, Gao H 1998 J. Mech. Phys. Solids 46 411

    [70]

    Chen J, Jin T, Tian Y 2016 Sci. China:Technol. Sci. 59 876

    [71]

    Wheeler J M, Raghavan R, Wehrs J, Zhang Y, Erni R, Michler J 2016 Nano Lett. 16 812

    [72]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [73]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

  • [1]

    Kanyanta V 2016 Hard, Superhard and Ultrahard Materials:An Overview in:Kanyanta V (Ed.) Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials (Cham:Springer International Publishing) p1

    [2]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [3]

    Wentorf R H 1957 J. Chem. Phys. 26 956

    [4]

    Westraadt J E, Sigalas I, Neethling J H 2015 Int. J. Refract. Met. Hard Mater. 48 286

    [5]

    Brookes C A, Brookes E J 1991 Diamond Relat. Mater. 1 13

    [6]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [7]

    Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R, Solozhenko V, Zhao Y 2004 Nat. Mater. 3 576

    [8]

    Chaudhri M M, Lim Y Y 2005 Nat. Mater. 4 4

    [9]

    Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y 2014 Nature 510 250

    [10]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [11]

    Simunek A, Vackar J 2006 Phys. Rev. Lett. 96 085501

    [12]

    Li K Y, Wang X T, Zhang F F, Xue D F 2008 Phys. Rev. Lett. 100 235504

    [13]

    Dubrovinskaia N, Solozhenko V L, Miyajima N, Dmitriev V, Kurakevych O O, Dubrovinsky L 2007 Appl. Phys. Lett. 90 101912

    [14]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [15]

    Dubrovinskaia N, Dub S, Dubrovinsky L 2006 Nano Lett. 6 824

    [16]

    Solozhenko V L, Kurakevych O O, Le Godec Y 2012 Adv. Mater. 24 1540

    [17]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L M, Wen B, He J, Liu Z 2013 Nature 493 385

    [18]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [19]

    Veprek S 2013 J. Vac. Sci. Technol. A 31 050822

    [20]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93

    [21]

    Zhao Z, Xu B, Tian Y 2016 Annu. Rev. Mater. Res. 46 383

    [22]

    Yeung M T, Mohammadi R, Kaner R B 2016 Annu. Rev. Mater. Res. 46 465

    [23]

    Teter D M 1998 MRS Bull. 23 22

    [24]

    Liu A Y, Cohen M L 1989 Science 245 841

    [25]

    Gilman J J 1973 Hardness–A Strength Microprobe in:Westbrook J H, Conrad H (Ed.) The Science of Hardness Testing and its Research Applications (Metals Park:American Society for Metals)

    [26]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [27]

    Sangiovanni D G, Hultman L, Chirita V 2011 Acta Mater. 59 2121

    [28]

    Ivanovskii A L 2012 Prog. Mater. Sci. 57 184

    [29]

    Guo X, Li L, Liu Z, Yu D, He J, Liu R, Xu B, Tian Y, Wang H T 2008 J. Appl. Phys. 104 023503

    [30]

    Ceder G 1998 Science 280 1099

    [31]

    Li C, Li J C, Jiang Q 2010 Solid State Commun. 150 1818

    [32]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713

    [33]

    Woodley S M, Catlow R 2008 Nat. Mater. 7 937

    [34]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [35]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [36]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [37]

    Lonie D C, Zurek E 2011 Comput. Phys. Commun. 182 372

    [38]

    Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101

    [39]

    Hall E O 1951 Proc. Phys. Soc. London B 64 747

    [40]

    Petch N J 1953 J. Iron Steel Ins. 174 25

    [41]

    Yip S 2004 Nat. Mater. 3 11

    [42]

    Tse J S, Klug D D, Gao F M 2006 Phys. Rev. B 73 140102

    [43]

    Halperin W P 1986 Rev. Mod. Phys. 58 533

    [44]

    Khan M A M, Kumar S, Ahamed M 2015 Mater. Sci. Semicond. Process. 30 169

    [45]

    Chang Y K, Hsieh H H, Pong W F, Tsai M H, Chien F Z, Tseng P K, Chen L C, Wang T Y, Chen K H, Bhusari D M, Yang J R, Lin S T 1999 Phys. Rev. Lett. 82 5377

    [46]

    Gerberich W W, Mook W M, Perrey C R, Carter C B, Baskes M I, Mukherjee R, Gidwani A, Heberlein J, McMurry P H, Girshick S L 2003 J. Mech. Phys. Solids. 51 979

    [47]

    Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F, Richter A 2005 Appl. Phys. Lett. 87 083106

    [48]

    Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H, Bi Y, Leng Y, He D W 2015 Appl. Phys. Lett. 106 121901

    [49]

    Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N, Hirao M, Ledbetter H 2013 Nat. Commun. 4 2343

    [50]

    Sumiya H, Harano K 2012 Diamond Relat. Mater. 24 44

    [51]

    Sumiya H, Harano K, Irifune T 2008 Rev. Sci. Instrum. 79 056102

    [52]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [53]

    Sumiya H, Irifune T 2007 J. Mater. Res. 22 2345

    [54]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [55]

    Lu L, Shen Y F, Chen X H, Qian L H, Lu K 2004 Science 304 422

    [56]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [57]

    Shan Z W, Lu L, Minor A M, Stach E A, Mao S X 2008 JOM 60 71

    [58]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 141

    [59]

    Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903

    [60]

    Hu S L, Yang J L, Liu W, Dong Y G, Cao S R, Liu J 2011 J. Solid State Chem. 184 1598

    [61]

    Yang C C, Li S 2008 J. Phys. Chem. C 112 1423

    [62]

    Li B, Sun H, Chen C 2014 Nat. Commun. 5 4965

    [63]

    Li B, Sun H, Chen C 2016 Phys. Rev. Lett. 117 116103

    [64]

    Meyer E 1908 Z. Ver. Dtsch. Ing. 52 645

    [65]

    Xu B, Tian Y J 2015 J. Phys. Chem. C 119 5633

    [66]

    Luo X, Liu Z, Xu B, Yu D, Tian Y, Wang H T, He J 2010 J. Phys. Chem. C 114 178501

    [67]

    Roundy D, Cohen M 2001 Phys. Rev. B 64 212103

    [68]

    Jensen C P, Jorgensen J F, Garnaes J, Picotto G B, Gori G 1998 J. Test. Eval. 26 532

    [69]

    Nix W D, Gao H 1998 J. Mech. Phys. Solids 46 411

    [70]

    Chen J, Jin T, Tian Y 2016 Sci. China:Technol. Sci. 59 876

    [71]

    Wheeler J M, Raghavan R, Wehrs J, Zhang Y, Erni R, Michler J 2016 Nano Lett. 16 812

    [72]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [73]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应. 物理学报, 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [3] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [4] 段聪聪, 程露, 殷垚, 朱琳. 蓝光钙钛矿发光二极管: 机遇与挑战. 物理学报, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [5] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [6] 包括, 马帅领, 徐春红, 崔田. 过渡金属轻元素化合物高硬度多功能材料的设计. 物理学报, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [7] 李玉阁, 李冠群, 李戈扬. 调制结构对c-VC/h-TiB2纳米多层膜的超硬效应的影响. 物理学报, 2013, 62(1): 016801. doi: 10.7498/aps.62.016801
    [8] 赵宇龙, 陈铮, 龙建, 杨涛. 晶体相场法模拟纳米晶材料反霍尔-佩奇效应的微观变形机理. 物理学报, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [9] 张睿智, 陈文灏, 杨璐娜. 纳米陶瓷中限域效应与界面效应对热电性能影响的理论研究. 物理学报, 2012, 61(18): 187201. doi: 10.7498/aps.61.187201
    [10] 夏志林. 激光作用下纳米限域介质材料中的电子加速过程. 物理学报, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [11] 乌晓燕, 孔明, 李戈扬, 赵文济. Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应. 物理学报, 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [12] 喻利花, 董师润, 许俊华, 李戈扬. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究. 物理学报, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [13] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. CdSe量子点的线性和非线性光学特性. 物理学报, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [14] 刘一星, 余亚斌, 张 丽, 全 军. 纳米体系中发光能隙展宽的研究. 物理学报, 2008, 57(11): 6751-6757. doi: 10.7498/aps.57.6751
    [15] 赵文济, 董云杉, 岳建岭, 李戈扬. Si3N4的晶体化和ZrN/Si3N4纳米多层膜的超硬效应. 物理学报, 2007, 56(1): 459-464. doi: 10.7498/aps.56.459
    [16] 赵文济, 孔 明, 黄碧龙, 李戈扬. SiO2的赝晶化及AlN/SiO2纳米多层膜的超硬效应. 物理学报, 2007, 56(3): 1574-1580. doi: 10.7498/aps.56.1574
    [17] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [18] 孔 明, 魏 仑, 董云杉, 李戈扬. TiN/Al2O3纳米多层膜的共格外延生长及超硬效应. 物理学报, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [19] 刘 艳, 董云杉, 岳建岭, 李戈扬. 反应磁控溅射ZrN/AlON纳米多层膜的晶体生长和超硬效应. 物理学报, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [20] 魏 仑, 梅芳华, 邵 楠, 李戈扬, 李建国. TiN/SiO2纳米多层膜的晶体生长与超硬效应. 物理学报, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
计量
  • 文章访问数:  6591
  • PDF下载量:  625
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-10
  • 修回日期:  2016-10-24
  • 刊出日期:  2017-02-05

/

返回文章
返回