搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光III原型装置激光驱动高速飞片实验研究进展

税敏 储根柏 席涛 赵永强 范伟 何卫华 单连强 朱斌 辛建婷 谷渝秋

引用本文:
Citation:

神光III原型装置激光驱动高速飞片实验研究进展

税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋

Experimental progress of laser-driven flyers at the SG-III prototype laser facility

Shui Min, Chu Gen-Bai, Xi Tao, Zhao Yong-Qiang, Fan Wei, He Wei-Hua, Shan Lian-Qiang, Zhu Bin, Xin Jian-Ting, Gu Yu-Qiu
PDF
导出引用
  • 激光驱动飞片技术具有产生的飞片速度高、成本低、装置简单等传统动高压加载技术无法取代的优点.随着激光技术的发展,利用高功率激光脉冲发射高速飞片受到越来越多的关注.本文介绍了在神光III原型装置上开展的激光驱动高速飞片实验研究.利用纳秒短脉冲和纳秒整形长脉冲,设计并开展了几种不同方式加速飞片的实验研究,成功获得了10 kms-1的固态铝飞片和50 kms-1超高速度的复合金属飞片,而且飞片具有良好的平面性和完整性.对实验的物理设计、技术途径和数据结果进行了比较全面的分析,为进一步开展激光驱动高速飞片相关实验研究提供了思路,同时也证明了神光III原型装置在激光驱动高速飞片实验研究方面有着巨大的潜力.
    Laser-driven flyers have unique advantages of high flyer velocity, low cost, simple facility compared with the flyers driven by other conventional dynamic high-pressure loading techniques. With the fast development of laser technique, launching hypervelocity flyers with high-intensity laser pulse has become more and more prevalent. In this paper, we introduce the recent experiments of laser-driven flyers at the SG-III prototype laser facility. Three ways of launching hypervelocity flyers are developed and introduced, respectively. In the first way, multilayered aluminum flyers are gradually accelerated to a terminal velocity of 8 km/s, which is measured by optical velocimetry, without melting and vaporization. The pressure distribution within the flyer shows that the temporally ramped pulse ablation generates a compression wave, and the flyer is accelerated by this wave and its reverberation within the flyer. In the second way, a strong laser ablates the low-density reservoir foil and generates strong shock in the foil. The shock wave is strong enough, and when the shock breaks out from the free surface, the foil will unload as plasma towards the flyer with a density profile. The plasma decelerates upon colliding the flyer, and the single-layered flyer is gradually accelerated by the momentum transition. In our experiments, single-layered aluminum foil and single-layered tantalum foil are accelerated to 11.5 km/s and 6.5 km/s, respectively. According to the pressure distribution within the flyer, the flyer is also accelerated by the compression wave produced by the plasma collision, which is similar to the case of direct ablation by temporally ramped pulse. However, the way of plasma collision could better reduce X-ray and electron preheat and obtain cleaner flyers. In the last way, the flyers are launched by direct strong short-laser ablation. The multi-layered aluminum foil is accelerated to a high average velocity of 21.3 km/s by using a 3-ns quadrate laser pulse at 351 nm after spatial homogenization. A line-velocity interferometer system for any reflect (VISAR) is employed to monitor the processes of flyer launch and flight in a vacuum gap and the shock velocity associated with phase change in fused silica target after flyer impact is inferred. The reflectivity variations of the VISAR fringe pattern and the shock velocity in the fused silica suggest that the flyer owns a density gradient characteristic. Furthermore, specifically designed multi-layered flyers (polyimide/copper) are accelerated by shock impedance and reverberation techniques to a super high averaged velocity of 55 km/s, which is much faster than recently reported results. Light-emission signals of shock breakout and flyer impact on flat or stepped windows are obtained, which indicates the good planarity and integrity for the flyer. Compared with single-layer flyers, multi-layered flyers have a good planarity, and a high energy conversion efficiency from laser to flyers. In this paper, we give a comprehensive analysis and comparison of the experimental designs, technique means and data results about laser-driven flyers. This would provide a reference for further experimental study of laser-driven flyers and also verify that the SG-III prototype laser facility is a very promising facility for studying the hypervelocity flyers launching field.
      通信作者: 税敏, shuimin123@163.com;jane_xjt@126.com ; 辛建婷, shuimin123@163.com;jane_xjt@126.com
    • 基金项目: 国家自然科学基金(批准号:11504349)和中国工程物理研究院重点实验室基金(批准号:9140C680305140C68289)资助的课题.
      Corresponding author: Shui Min, shuimin123@163.com;jane_xjt@126.com ; Xin Jian-Ting, shuimin123@163.com;jane_xjt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504349) and the Key Laboratory Foundation of China Academy of Engineering Physics (Grant No. 9140C680305140C68289).
    [1]

    Wu L Z, Shen R Q, Xu J, Ye Y H, Hu Y 2010 Acta Armamentar II 31 219 (in Chinese) [吴立志, 沈瑞琪, 徐姣, 叶迎华, 胡艳 2010 兵工学报 31 219]

    [2]

    Cauble R, Phillion D W, Hoover T J, Holmes N C, Kilkenny J D, Lee R W 1993 Phys. Rev. Lett. 70 2102

    [3]

    Jones A H, Isbell W M, Maiden C J 1966 J. Appl. Phys. 37 3493

    [4]

    Glushak B L, Zhakov A P, Zhernokletov M V, Ternovoi V Y, Filimonov A S, Fortov V E 1989 Sov. Phys. JETP 69 739

    [5]

    Stilp A J 1987 Int. J. Impact Eng. 5 613

    [6]

    Chhabildas L C, Dunn J E, Reinhart W D, Miller J M 1993 J. Impact Eng. 14 121

    [7]

    Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J 1972 J. Appl. Phys. 43 2734

    [8]

    Swift D C, Niemczura J G, Paisley D L, Johnson R P, Luo S N, Tierney IV T E 2005 Rev. Sci. Instrum. 76 093907

    [9]

    Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902

    [10]

    Gu Z W, Sun C W, Luo L J 2002 Infrared Laser Eng. 31 428 (in Chinese) [谷卓伟, 孙承纬, 罗利军 2002 红外与激光工程 31 428]

    [11]

    Paisley D L, Montoya N I, Stahl D B 1990 19th International Congress on High-Speed Photography and Photonics Cambridge, United Kingdom, September 16-21, 1990 p760

    [12]

    Niu J C, Gong Z Z, Cao Y, Dai F, Yang J Y, Li Y 2014 Explosive and Shock Waves 34 129 (in Chinese) [牛锦超, 龚自正, 曹燕, 代福, 杨继运, 李宇 2014 爆炸与冲击 34 129]

    [13]

    Barker L M, Hollenback R E 1972 J. Appl. Phys. 43 4669

    [14]

    Xue Q X, Wang Z B, Jiang S E, Wang F, Ye X S, Liu J R 2014 Phys. Plasmas 21 072709

    [15]

    Jing F Q 1999 Guide of Experimental Equation of State p204 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第204页]

    [16]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2003 J. Appl. Phys. 94 2331

    [17]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002

    [18]

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204 (in Chinese) [单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204]

    [19]

    Shui M, Chu G B, Zhu B, He W H, Xi T, Fan W, Xin J T, Gu Y Q 2016 J. Appl. Phys. 119 035903

    [20]

    Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504

    [21]

    Prisbrey S T, Park H S, Remington B A, Cavallo R, May M, Pollaine S M, Rudd R, Maddox B, Comley A, Fried L, Blobaum K, Wallace R, Wilson M, Swift D, Satcher J, Kalantar D, Perry T, Giraldez E, Farrell M, Nikroo A 2012 Phys. Plasmas 19 056311

    [22]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330

    [23]

    Ozaki N, Koenig M, Benuzzi-Mounaix A, Vinci T, Ravasio A, Esposito M, Lepape S, Henry E, Hser G, Tanaka K A, Nazarov W, Nagai K, Yoshida M 2006 J. Phys. IV France 133 1101

    [24]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Gu Y Q 2015 Chin. Phys. B 24 094701

    [25]

    Okada K, Wakabayashi K, Takenaka H, Nagao H, Kondo K, Ono T, Takamatsu K, Ozaki N, Nagai K, Nakai M, Tanaka K A, Yoshida M 2003 Int. J. Impact Eng. 29 497

    [26]

    Kadonoa T, Yoshida M, Takahashi E, Matsushima I, Owadano Y, Ozaki N, Fujita K, Nakano M, Tanaka K A, Takenaka H, Kondo K 2000 J. Appl. Phys. 88 2943

    [27]

    Tanaka K A, Hara M, Ozaki N, Sasatani Y, Anisimov S I, Kondo K, Nakanoa M, Nishihara K, Takenaka H, Yoshida M, Mima K 2000 Phys. Plasmas 7 676

    [28]

    Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka K A, Fujimoto F, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M, Takenaka H 2001 J. Appl. Phys. 89 2571

    [29]

    Brown K E, Shaw W L, Zheng X X, Dlottb D D 2012 Rev. Sci. Instrum. 83 103901

  • [1]

    Wu L Z, Shen R Q, Xu J, Ye Y H, Hu Y 2010 Acta Armamentar II 31 219 (in Chinese) [吴立志, 沈瑞琪, 徐姣, 叶迎华, 胡艳 2010 兵工学报 31 219]

    [2]

    Cauble R, Phillion D W, Hoover T J, Holmes N C, Kilkenny J D, Lee R W 1993 Phys. Rev. Lett. 70 2102

    [3]

    Jones A H, Isbell W M, Maiden C J 1966 J. Appl. Phys. 37 3493

    [4]

    Glushak B L, Zhakov A P, Zhernokletov M V, Ternovoi V Y, Filimonov A S, Fortov V E 1989 Sov. Phys. JETP 69 739

    [5]

    Stilp A J 1987 Int. J. Impact Eng. 5 613

    [6]

    Chhabildas L C, Dunn J E, Reinhart W D, Miller J M 1993 J. Impact Eng. 14 121

    [7]

    Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J 1972 J. Appl. Phys. 43 2734

    [8]

    Swift D C, Niemczura J G, Paisley D L, Johnson R P, Luo S N, Tierney IV T E 2005 Rev. Sci. Instrum. 76 093907

    [9]

    Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902

    [10]

    Gu Z W, Sun C W, Luo L J 2002 Infrared Laser Eng. 31 428 (in Chinese) [谷卓伟, 孙承纬, 罗利军 2002 红外与激光工程 31 428]

    [11]

    Paisley D L, Montoya N I, Stahl D B 1990 19th International Congress on High-Speed Photography and Photonics Cambridge, United Kingdom, September 16-21, 1990 p760

    [12]

    Niu J C, Gong Z Z, Cao Y, Dai F, Yang J Y, Li Y 2014 Explosive and Shock Waves 34 129 (in Chinese) [牛锦超, 龚自正, 曹燕, 代福, 杨继运, 李宇 2014 爆炸与冲击 34 129]

    [13]

    Barker L M, Hollenback R E 1972 J. Appl. Phys. 43 4669

    [14]

    Xue Q X, Wang Z B, Jiang S E, Wang F, Ye X S, Liu J R 2014 Phys. Plasmas 21 072709

    [15]

    Jing F Q 1999 Guide of Experimental Equation of State p204 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第204页]

    [16]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2003 J. Appl. Phys. 94 2331

    [17]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002

    [18]

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204 (in Chinese) [单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204]

    [19]

    Shui M, Chu G B, Zhu B, He W H, Xi T, Fan W, Xin J T, Gu Y Q 2016 J. Appl. Phys. 119 035903

    [20]

    Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504

    [21]

    Prisbrey S T, Park H S, Remington B A, Cavallo R, May M, Pollaine S M, Rudd R, Maddox B, Comley A, Fried L, Blobaum K, Wallace R, Wilson M, Swift D, Satcher J, Kalantar D, Perry T, Giraldez E, Farrell M, Nikroo A 2012 Phys. Plasmas 19 056311

    [22]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330

    [23]

    Ozaki N, Koenig M, Benuzzi-Mounaix A, Vinci T, Ravasio A, Esposito M, Lepape S, Henry E, Hser G, Tanaka K A, Nazarov W, Nagai K, Yoshida M 2006 J. Phys. IV France 133 1101

    [24]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Gu Y Q 2015 Chin. Phys. B 24 094701

    [25]

    Okada K, Wakabayashi K, Takenaka H, Nagao H, Kondo K, Ono T, Takamatsu K, Ozaki N, Nagai K, Nakai M, Tanaka K A, Yoshida M 2003 Int. J. Impact Eng. 29 497

    [26]

    Kadonoa T, Yoshida M, Takahashi E, Matsushima I, Owadano Y, Ozaki N, Fujita K, Nakano M, Tanaka K A, Takenaka H, Kondo K 2000 J. Appl. Phys. 88 2943

    [27]

    Tanaka K A, Hara M, Ozaki N, Sasatani Y, Anisimov S I, Kondo K, Nakanoa M, Nishihara K, Takenaka H, Yoshida M, Mima K 2000 Phys. Plasmas 7 676

    [28]

    Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka K A, Fujimoto F, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M, Takenaka H 2001 J. Appl. Phys. 89 2571

    [29]

    Brown K E, Shaw W L, Zheng X X, Dlottb D D 2012 Rev. Sci. Instrum. 83 103901

  • [1] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [2] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断. 物理学报, 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [3] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [4] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [5] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究. 物理学报, 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [6] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [7] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [8] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [10] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究. 物理学报, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [11] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [12] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究. 物理学报, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [13] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] 王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤. 超高压下冲击波速度直接测量技术. 物理学报, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [15] 赵兴海, 赵翔, 高杨, 席仕伟, 苏伟. 光纤传输激光驱动飞片实验研究. 物理学报, 2011, 60(11): 118204. doi: 10.7498/aps.60.118204
    [16] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [17] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [18] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [19] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波. 物理学报, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [20] 傅思祖, 黄秀光, 吴 江, 王瑞荣, 马民勋, 何钜华, 叶君健, 顾 援. 斜入射激光驱动的冲击波在样品中传播特性的实验研究. 物理学报, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
计量
  • 文章访问数:  6050
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-04
  • 刊出日期:  2017-03-05

/

返回文章
返回