搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基光子晶体异质结的单向传输特性

刘丹 胡森 肖明

引用本文:
Citation:

硅基光子晶体异质结的单向传输特性

刘丹, 胡森, 肖明

Study on unidirectional transmission in silicon photonic crystal heterojunctions

Liu Dan, Hu Sen, Xiao Ming
PDF
导出引用
  • 基于光子晶体异质结结构实现高效的单向传输特性的光二极管是光电集成及全光通信领域的研究热点.根据光子晶体方向带隙差异构建了正交和非正交光子晶体异质结结构,利用时域有限差分法计算透过谱及场分布图.对比研究发现,非正交光子晶体异质结结构能够实现光的单向传输.通过界面结构的调整,优化了单向传输性能,构造了一种能实现宽频带、高效率单向传输的异质结结构.优化后的光子晶体异质结的单向传输效率高达54%,且结构简单、尺寸小,实用性强.
    Electronic diode plays an important role in electronic circuits owing to its capability of unidirectional movement of the current flux. An optical diode offers unidirectional propagation of light beams, which plays key roles in the all-optical integrated circuits. Unidirectional wave propagation requires either time-reversal or spatial inversion symmetry breaking. The former can be achieved with the help of nonlinear materials, magnetic-optical materials and so on. The realization of these schemes all needs the external conditions (electric field, magnetic field or light field), and thus their applications are limited. In contrast, spatial inversion symmetry breaking can make up for this shortcoming and has been widely studied. Through breaking the structure's spatial inversion symmetry, much research demonstrated that the unidirectional light propagation could be achieved in a photonic crystal structure. Specially, the optical diode based on the photonic crystal heterojunction has been drawing much attention. Though relevant studies have been reported, how to find a more simple structure to realize high-efficiency optical diodes is always pursued by people. The previous design of optical diode is generally based on the orthogonal or non-orthogonal photonic crystal heterojunctions. However, the comparative analysis of the two types of heterojunctions has not been systematically carried out. The transmission characteristics of two-dimensional orthogonal and non-orthogonal silicon photonic crystal heterojunctions are obtained and compared. Firstly, the directional band gap mismatch of two-dimensional square-lattice silicon photonic crystals with the same lattice constant but different air hole radii is calculated by the plane wave expansion method. The band structure indicates that in a certain frequency range, one photonic crystal is the omni-directional pass band, while the other has directional band gap. This is just the necessary condition for the unidirectional light transmission through the photonic crystal heterojunctions. Therefore, the heterojunction constructed by the two photonic crystals is expected to achieve optical diode. Based on this, the orthogonal and the non-orthogonal heterojunctions are proposed. Their transmission spectra and field distributions are calculated by the finite-difference time-domain method. The results show that the unidirectional light transmission can be realized by the non-orthogonal heterojunction structure (unidirectional transmission efficiency reaches 45%) but not the orthogonal heterojunction structure. That is to say, the realization of unidirectional transmission is closely related to the orientation of the hetero-interface. Moreover, the non-orthogonal photonic crystal hetero-interface is optimized. It is found that the unidirectional transmission efficiency increases to 54% and the overall increases by 10%. More importantly, it greatly improves the performance of optical diode for its simple structure and small size, and provides another more effective design method.
      通信作者: 刘丹, liudanhu725@126.com
    • 基金项目: 国家自然科学基金(批准号:11504100)和湖北省教育厅中青年人才项目(批准号:Q20153004)资助的课题.
      Corresponding author: Liu Dan, liudanhu725@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504100) and the Fund for Excellent Youths of the Hubei Provincial Department of Education, China (Grant No. Q20153004).
    [1]

    Hou J 2011Ph.D.Dissertation(Wuhan:Huazhong University of Science and Technology)(in Chinese)[侯金2011博士学位论文(武汉:华中科技大学)]

    [2]

    Wang C, Zhou C Z, Li Z Y 2011Opt.Express 19 26948

    [3]

    Yablonovitch E 1987Phys.Rev.Lett. 58 2059

    [4]

    Joannopoulos D J, Mead D R, Winn N J 2008Photonic Crystals:Molding the Flow of Light Second Edition (Princeton:Princeton University Press) pp190-206

    [5]

    Wu H, Jiang L Y, Jia W, et al. 2012Chin.Phys.Lett. 29 034203

    [6]

    Zhu Q Y, Fu Y Q, Hu D Q, et al. 2012Chin.Phys.B 21 064220

    [7]

    Zhou Y, Yin L Q 2012Chin.Phys.Lett. 29 064213

    [8]

    Zhang X Z, Feng M, Zhang X Z 2013Acta Phys.Sin. 62 024201(in Chinese)[张学智, 冯鸣, 张心正2013物理学报62 024201]

    [9]

    Ibrahim S K, Bhandare S, Sandel D, et al. 2004Electron.Lett. 40 1293

    [10]

    Zaman T R, Guo X, Ram R 2007Appl.Phys.Lett. 90 023514

    [11]

    Bi L, Hu J, Jiang P, et al. 2011Nat.Photonics 5 758

    [12]

    Fan L, Wang J, Varghese L T 2012Science 335 447

    [13]

    Li X F, Ni X, Feng L, et al. 2011Phys.Rev.Lett. 106 084301

    [14]

    Kurt H, Yilmaz D, Akosman A E, et al. 2012Opt.Express 20 20635

    [15]

    Zhang Y Y, Kan Q, Wang G P 2014Opt.Lett. 39 4934

    [16]

    Feng S, Wang Y Q 2013Opt.Express 21 220

    [17]

    Feng S, Wang Y Q 2013Opt.Mater. 36 546

    [18]

    Cheng L F, Ren C, Wang P, Feng S 2014Acta Phys.Sin. 63 154213(in Chinese)[程立锋, 任承, 王萍, 冯帅2014物理学报63 154213]

    [19]

    Lu C C, Hu X Y, Zhang Y B, et al. 2011Appl.Phys.Lett. 99 051107

    [20]

    Cicek A, Yucel M B, Kaya O A, et al. 2012Opt.Lett. 37 2937

    [21]

    Feng L, Ayache M, Huang J, et al. 2011Science 333 729

    [22]

    Colak E, Serebryannikov A E, Cakmak A O, et al. 2013Appl.Phys.Lett. 102 151105

    [23]

    Wang L H, Yang X L, Meng X F, et al. 2014Chin.Phys.B 23 034215

    [24]

    Cao Z, Qi X Y, Zhang G Q, et al. 2013Opt.Lett. 38 3212

    [25]

    Li L 2015M.S.Dissertation(Taiyuan:Taiyuan University of Technology)(in Chinese)[李琳2015硕士学位论文(太原:太原理工大学)]

  • [1]

    Hou J 2011Ph.D.Dissertation(Wuhan:Huazhong University of Science and Technology)(in Chinese)[侯金2011博士学位论文(武汉:华中科技大学)]

    [2]

    Wang C, Zhou C Z, Li Z Y 2011Opt.Express 19 26948

    [3]

    Yablonovitch E 1987Phys.Rev.Lett. 58 2059

    [4]

    Joannopoulos D J, Mead D R, Winn N J 2008Photonic Crystals:Molding the Flow of Light Second Edition (Princeton:Princeton University Press) pp190-206

    [5]

    Wu H, Jiang L Y, Jia W, et al. 2012Chin.Phys.Lett. 29 034203

    [6]

    Zhu Q Y, Fu Y Q, Hu D Q, et al. 2012Chin.Phys.B 21 064220

    [7]

    Zhou Y, Yin L Q 2012Chin.Phys.Lett. 29 064213

    [8]

    Zhang X Z, Feng M, Zhang X Z 2013Acta Phys.Sin. 62 024201(in Chinese)[张学智, 冯鸣, 张心正2013物理学报62 024201]

    [9]

    Ibrahim S K, Bhandare S, Sandel D, et al. 2004Electron.Lett. 40 1293

    [10]

    Zaman T R, Guo X, Ram R 2007Appl.Phys.Lett. 90 023514

    [11]

    Bi L, Hu J, Jiang P, et al. 2011Nat.Photonics 5 758

    [12]

    Fan L, Wang J, Varghese L T 2012Science 335 447

    [13]

    Li X F, Ni X, Feng L, et al. 2011Phys.Rev.Lett. 106 084301

    [14]

    Kurt H, Yilmaz D, Akosman A E, et al. 2012Opt.Express 20 20635

    [15]

    Zhang Y Y, Kan Q, Wang G P 2014Opt.Lett. 39 4934

    [16]

    Feng S, Wang Y Q 2013Opt.Express 21 220

    [17]

    Feng S, Wang Y Q 2013Opt.Mater. 36 546

    [18]

    Cheng L F, Ren C, Wang P, Feng S 2014Acta Phys.Sin. 63 154213(in Chinese)[程立锋, 任承, 王萍, 冯帅2014物理学报63 154213]

    [19]

    Lu C C, Hu X Y, Zhang Y B, et al. 2011Appl.Phys.Lett. 99 051107

    [20]

    Cicek A, Yucel M B, Kaya O A, et al. 2012Opt.Lett. 37 2937

    [21]

    Feng L, Ayache M, Huang J, et al. 2011Science 333 729

    [22]

    Colak E, Serebryannikov A E, Cakmak A O, et al. 2013Appl.Phys.Lett. 102 151105

    [23]

    Wang L H, Yang X L, Meng X F, et al. 2014Chin.Phys.B 23 034215

    [24]

    Cao Z, Qi X Y, Zhang G Q, et al. 2013Opt.Lett. 38 3212

    [25]

    Li L 2015M.S.Dissertation(Taiyuan:Taiyuan University of Technology)(in Chinese)[李琳2015硕士学位论文(太原:太原理工大学)]

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211299
    [3] 刘丹, 胡森. 可实现偏振无关单向传输的二维硅基环形孔光子晶体. 物理学报, 2019, 68(2): 024206. doi: 10.7498/aps.68.20181397
    [4] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [5] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [6] 程立锋, 任承, 王萍, 冯帅. 基于异质结界面优化的光子晶体二极管单向传输特性研究. 物理学报, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [7] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [8] 潘伟, 余和军, 张晓光, 席丽霞. 高Q值二维光子晶体缺三腔的数值模拟与分析. 物理学报, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [9] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [10] 吴婧, 王鸣. 胶体晶体微结构光纤传输特性研究. 物理学报, 2012, 61(6): 064215. doi: 10.7498/aps.61.064215
    [11] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性. 物理学报, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [12] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [13] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究. 物理学报, 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [14] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [15] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [16] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究. 物理学报, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [17] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [18] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计. 物理学报, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
计量
  • 文章访问数:  4688
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-24
  • 修回日期:  2016-12-02
  • 刊出日期:  2017-03-05

/

返回文章
返回