搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2薄膜红外波段介电常数谱的高斯振子模型研究

刘华松 杨霄 王利栓 姜承慧 刘丹丹 季一勤 张锋 陈德应

引用本文:
Citation:

SiO2薄膜红外波段介电常数谱的高斯振子模型研究

刘华松, 杨霄, 王利栓, 姜承慧, 刘丹丹, 季一勤, 张锋, 陈德应

Gaussian oscillator model of the dielectric constant of SiO2 thin film in infrared range

Liu Hua-Song, Yang Xiao, Wang Li-Shuan, Jiang Cheng-Hui, Liu Dan-Dan, Ji Yi-Qin, Zhang Feng, Chen De-Ying
PDF
导出引用
  • 在无定形SiO2非晶材料红外波段反常色散区介电常数研究中,复合高斯振子模型是介电常数重要的色散模型之一,复合振子中振子的数量和物理意义是重要的研究内容.基于化学计量学中的因子分析技术,提出将SiO2薄膜特征振动峰的数量等效为化学组分的振子数量的方法.采用离子束溅射沉积方法制备了厚度分别为100,200,,800 nm的8种SiO2薄膜样品,以这8个样品的红外光谱透射率作为光谱矩阵元素.通过因子分析技术确定了400-4000 cm-1波数范围内高斯振子数量为9个,使SiO2薄膜的介电常数反演计算结果具有明确的物理意义.通过对3000-4000 cm-1波数范围内介电常数的分析,确定了薄膜中具有明显的含水(或羟基)化学缺陷,并且这种缺陷影响到整个红外波段内的介电常数.
    SiO2 thin film is one of the most important low refractive index materials in the area of optical thin films. It is always used in the design and preparation of many kinds of multilayer films. The dielectric constant of the SiO2 thin film is a key characteristic for design of the multilayer thin film. The composite Gaussian oscillator model is one of the most important dispersion models for the dielectric constant of the amorphous SiO2 in the anomalous dispersion regime in the infrared range. More and more researchers have focused on the number and the physical meaning of the oscillators in the composite oscillator. A method to determine the SiO2 thin film oscillator quantity was proposed. In this method, the quantity of oscillator peaks was equivalent to the oscillator number of chemical composition, based on the factor analysis technology of chemometrics. Concretely, the composite oscillators of the dielectric constant were equivalent to the mixture, and the independent oscillators were equivalent to the compositions of the mixture. The absorbance of the mixture changed with the physical thickness of the thin film. Eight SiO2 film samples with different thickness were prepared on the Si substrate by the ion beam sputtering deposition. The infrared transmittances of the eight samples were used as elements in the spectral matrix. There were nine Gaussian oscillators in the range of 400-4000 cm-1, which was determined by the factor analysis technology. The dielectric constant of the SiO2 thin film in this range was obtained by the inverse calculation from the spectral transmittance. It provides the inverse calculation result for the dielectric constant of the SiO2 thin film with a specific physical meaning. By analyzing the dielectric constant in the range of 400-900 cm-1, the symmetric stretching vibrational frequency and the in-plane rocking frequency of the Si-O-Si bond of the SiO2 thin film can be obtained. Compared with fused silica, the symmetric stretching vibrational frequency increased while the rocking frequency was reduced. In fact, the frequency shifts are caused by the strain of the thin film. By analyzing the dielectric constant in the range of 900-1500 cm-1, four anti-symmetric stretching vibrational frequencies of the Si-O-Si bond in the SiO2 thin film were obtained. They have a certain corresponding relation with the anti-symmetric stretching vibrational frequency of the Si-O-Si bond in the fused silica. What's more, by analyzing the dielectric constant in the range of 3000-4000 cm-1, the water-cut (or hydroxyl) chemical defects in the films were confirmed. The chemical defects can influence the dielectric constant in the whole infrared range.
      通信作者: 季一勤, ji_yiqin@yahoo.com
    • 基金项目: 国家自然科学基金(批准号:61405145,61235011)、天津市自然科学基金(批准号:15JCZDJC31900)和中国博士后科学基金(批准号:2014M560104,2015T80115)资助的课题.
      Corresponding author: Ji Yi-Qin, ji_yiqin@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405145, 61235011), the Natural Science Foundation of Tianjin (Grant No. 15JCZDJC31900), and the China Postdoctoral Science Foundation (Grant Nos. 2014M560104, 2015T80115).
    [1]

    Pliskin W A 1977J.Vac.Sci.Technol. 14 1064

    [2]

    Klembergsapieha J E, Obersteberghaus J, Martinu L, Blacker R, Stevenson I, Sadkhin G, Morton D, McEldowney S, Klinger R, Martin P J, Court N, Dligatch S, Gross M, Netterfield R P 2004Appl.Opt. 43 2670

    [3]

    Tsu D V 2000J.Vac.Sci.Technol.B 18 1796

    [4]

    Boyd I W, Wilson J I B 1982J.Appl.Phys. 53 4166

    [5]

    Hanna R 1965J.Am.Ceram.Soc. 48 595

    [6]

    Lisovskii I P, Litovchenko V G, Lozinskii V G, Steblovskii G I 1992Thin Solid Films 213 164

    [7]

    Gillette P C, Lando J B, Koenig J L 1982Appl.Spectrosc. 36 401

    [8]

    Hu S M 1980J.Appl.Phys. 51 5945

    [9]

    Martinet C, Devine R A B 1995J.Appl.Phys. 77 4343

    [10]

    Meneses D D S, Malki M, Echegut P 2006J.Non-Cryst.Solids 352 769

    [11]

    Liu H S, Jiang C H, Wang L S, Liu D D, Jiang Y G, Sun P, Ji Y Q 2014Spectrosc.Spect.Anal. 34 1163(in Chinese)[刘华松, 姜承慧, 王利栓, 刘丹丹, 姜玉刚, 孙鹏, 季一勤2014光谱学与光谱分析34 1163]

    [12]

    Liu H S, Ji Y Q, Zhang F, Liu D D, Leng J, Wang L S, Jiang Y G, Chen D Y, Jiao H F, Bao G H, Cheng X B 2014Acta Opt.Sin. 34 0831003(in Chinese)[刘华松, 季一勤, 张锋, 刘丹丹, 冷健, 王利栓, 姜玉刚, 陈德应, 焦宏飞, 鲍刚华, 程鑫彬2014光学学报34 0831003]

    [13]

    Gillette P C, Koenig J L 1984Appl.Spectrosc. 38 334

    [14]

    Gillette P C, Lando J B, Koenig J L 2009Phys.Rev.D 79 107

    [15]

    Yang X Z, Zhu S N, Zhu S G 1987Chem.Online 6 58(in Chinese)[杨小震, 朱善农, 朱善工1987化学通报6 58]

    [16]

    Pulker H K 1999Coating on Glass(2m nd Ed.)(New York:Elsevier Science) pp352-353

    [17]

    Mcmillan P F, Remmele R L 1986American Mineral. 71 772

    [18]

    Brunetbruneau A, Rivory J, Rafin, Robic J Y, Chaton P 1997J.Appl.Phys. 82 1330

    [19]

    Gunde M K 2000Physica B 292 286

    [20]

    Kanashima T, Okuyama M, Hamakawa Y 1997Jpn.J.Appl.Phys. 36 1448

  • [1]

    Pliskin W A 1977J.Vac.Sci.Technol. 14 1064

    [2]

    Klembergsapieha J E, Obersteberghaus J, Martinu L, Blacker R, Stevenson I, Sadkhin G, Morton D, McEldowney S, Klinger R, Martin P J, Court N, Dligatch S, Gross M, Netterfield R P 2004Appl.Opt. 43 2670

    [3]

    Tsu D V 2000J.Vac.Sci.Technol.B 18 1796

    [4]

    Boyd I W, Wilson J I B 1982J.Appl.Phys. 53 4166

    [5]

    Hanna R 1965J.Am.Ceram.Soc. 48 595

    [6]

    Lisovskii I P, Litovchenko V G, Lozinskii V G, Steblovskii G I 1992Thin Solid Films 213 164

    [7]

    Gillette P C, Lando J B, Koenig J L 1982Appl.Spectrosc. 36 401

    [8]

    Hu S M 1980J.Appl.Phys. 51 5945

    [9]

    Martinet C, Devine R A B 1995J.Appl.Phys. 77 4343

    [10]

    Meneses D D S, Malki M, Echegut P 2006J.Non-Cryst.Solids 352 769

    [11]

    Liu H S, Jiang C H, Wang L S, Liu D D, Jiang Y G, Sun P, Ji Y Q 2014Spectrosc.Spect.Anal. 34 1163(in Chinese)[刘华松, 姜承慧, 王利栓, 刘丹丹, 姜玉刚, 孙鹏, 季一勤2014光谱学与光谱分析34 1163]

    [12]

    Liu H S, Ji Y Q, Zhang F, Liu D D, Leng J, Wang L S, Jiang Y G, Chen D Y, Jiao H F, Bao G H, Cheng X B 2014Acta Opt.Sin. 34 0831003(in Chinese)[刘华松, 季一勤, 张锋, 刘丹丹, 冷健, 王利栓, 姜玉刚, 陈德应, 焦宏飞, 鲍刚华, 程鑫彬2014光学学报34 0831003]

    [13]

    Gillette P C, Koenig J L 1984Appl.Spectrosc. 38 334

    [14]

    Gillette P C, Lando J B, Koenig J L 2009Phys.Rev.D 79 107

    [15]

    Yang X Z, Zhu S N, Zhu S G 1987Chem.Online 6 58(in Chinese)[杨小震, 朱善农, 朱善工1987化学通报6 58]

    [16]

    Pulker H K 1999Coating on Glass(2m nd Ed.)(New York:Elsevier Science) pp352-353

    [17]

    Mcmillan P F, Remmele R L 1986American Mineral. 71 772

    [18]

    Brunetbruneau A, Rivory J, Rafin, Robic J Y, Chaton P 1997J.Appl.Phys. 82 1330

    [19]

    Gunde M K 2000Physica B 292 286

    [20]

    Kanashima T, Okuyama M, Hamakawa Y 1997Jpn.J.Appl.Phys. 36 1448

  • [1] 胡昌海, 王任, 陈传升, 王秉中. 平面相控阵超大角度扫描的阵因子分析. 物理学报, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850
    [2] 郭昭龙, 赵海新, 赵卫. 纳米ZnO-SiO2自清洁增透薄膜的制备及其性能. 物理学报, 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [3] 刘华松, 季一勤, 姜玉刚, 王利栓, 冷健, 孙鹏, 庄克文. SiO2薄膜内部短程有序微结构研究. 物理学报, 2013, 62(18): 187801. doi: 10.7498/aps.62.187801
    [4] 李志成, 刘斌, 张荣, 张曌, 陶涛, 谢自力, 陈鹏, 江若琏, 郑有炓, 姬小利. 紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究. 物理学报, 2012, 61(8): 087802. doi: 10.7498/aps.61.087802
    [5] 冉令坤, 周玉淑, 杨文霞. 强对流降水过程动力因子分析和预报研究. 物理学报, 2011, 60(9): 099201. doi: 10.7498/aps.60.099201
    [6] 李凌, 金贞兰, 李斌. 基于因子分析方法的相位同步脑电源的时-空动力学分析. 物理学报, 2011, 60(4): 048703. doi: 10.7498/aps.60.048703
    [7] 周鸿娟, 甄聪棉, 张永进, 赵翠莲, 马丽, 侯登录. N掺杂SiO2纳米薄膜的制备及其磁性. 物理学报, 2010, 59(5): 3499-3503. doi: 10.7498/aps.59.3499
    [8] 郑立仁, 黄柏标, 尉吉勇. SiO2纳米线簇、C-Si-O纳米球的制备及形貌、红外光谱和光致发光光谱研究. 物理学报, 2009, 58(12): 8612-8616. doi: 10.7498/aps.58.8612
    [9] 杜杰, 叶超, 俞笑竹, 张海燕, 宁兆元. CHx掺杂SiCOH 低介电常数薄膜的物性热稳定性分析. 物理学报, 2009, 58(1): 575-579. doi: 10.7498/aps.58.575
    [10] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [11] 伍冬兰, 程新路, 杨向东, 谢安东, 余晓光, 邓小辉. SiO2分子的基态(X1A1)结构与分析势能函数. 物理学报, 2007, 56(1): 147-151. doi: 10.7498/aps.56.147
    [12] 姜海青, 姚 熹, 车 俊, 汪敏强. ZnSe/SiO2复合薄膜光学常数与荧光光谱的研究. 物理学报, 2006, 55(4): 2084-2091. doi: 10.7498/aps.55.2084
    [13] 王婷婷, 叶 超, 宁兆元, 程珊华. SiCOH低介电常数薄膜的性质和键结构分析. 物理学报, 2005, 54(2): 892-896. doi: 10.7498/aps.54.892
    [14] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜. 物理学报, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [15] 朱开贵, 石建中, 邵庆益. 镶嵌在SiO2薄膜中InAs纳米颗粒的Raman散射. 物理学报, 2000, 49(11): 2304-2306. doi: 10.7498/aps.49.2304
    [16] 谢斌, 苏昉, 王文楼. 高聚物(PEO)n-CuBr2薄膜在流体静高压下的介电常数研究. 物理学报, 1995, 44(6): 903-910. doi: 10.7498/aps.44.903
    [17] 吴全德, 李建平, 董引吾. 氧化铯薄膜的光学特性和介电常数. 物理学报, 1987, 36(1): 101-107. doi: 10.7498/aps.36.101
    [18] 何星飞, 莫党. n维固体带间光学性质与振子模型 n/2次积分关系. 物理学报, 1987, 36(12): 1624-1629. doi: 10.7498/aps.36.1624
    [19] 沈学础, 褚君浩. CdxHg1-xTe混晶的远红外反射光谱和多振子模型. 物理学报, 1985, 34(1): 56-64. doi: 10.7498/aps.34.56
    [20] 沈世纲, 黄敞, 于凤树. 关于热生长SiO2薄膜厚度的测量. 物理学报, 1964, 20(7): 654-661. doi: 10.7498/aps.20.654
计量
  • 文章访问数:  5659
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-10
  • 修回日期:  2016-12-05
  • 刊出日期:  2017-03-05

/

返回文章
返回