搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控溅射Cl掺杂CdTe薄膜的孪晶结构与电学性质

朱子尧 刘向鑫 蒋复国 张跃

引用本文:
Citation:

磁控溅射Cl掺杂CdTe薄膜的孪晶结构与电学性质

朱子尧, 刘向鑫, 蒋复国, 张跃

The twins structure and electric properties of Cl doped CdTe film by magnetron sputtering

Zhu Zi-Yao, Liu Xiang-Xin, Jiang Fu-Guo, Zhang Yue
PDF
导出引用
  • CdTe用作薄膜太阳能电池吸收层需要经过氯处理才能得到高的光电转换效率,其中Cl 原子的作用机理仍然没有完全被理解. 实验发现Cl原子主要偏聚在CdTe晶界处,对晶界有钝化作用,而有第一性原理计算认为Cl原子掺入CdTe晶格能够引入浅能级提高光电转换效率. 为了验证Cl原子掺杂是否对CdTe的光电转换效率有益,本文通过磁控溅射制备了100 ppm(ppm = 1/1000000) Cl原子掺杂的CdTe(CdTe:Cl) 薄膜并研究了薄膜的晶体结构与电学性质,同时对比了正常氯处理的无掺杂CdTe薄膜与CdTe:Cl薄膜之间的性质区别. 实验发现Cl原子掺杂会在CdTe:Cl中形成大量仅由几个原子层构成的孪晶,电子和空穴在CdTe:Cl薄膜中没有分离的传导通道,而在氯处理后的CdTe薄膜中电子沿晶界传导,空穴沿晶粒内部传导. 磁控溅射沉积的CdTe:Cl 多晶薄膜属于高阻材料,退火前载流子迁移率很低,退火后载流子浓度降低到本征数量级,电阻率提高. CdTe:Cl薄膜电池效率远低于正常氯处理的无掺杂CdTe薄膜电池效率. 磁控溅射制备的非平衡重掺杂CdTe:Cl多晶薄膜不适合用作薄膜太阳能电池的吸收层.
    CdTe is a promising material for fabricating high-efficient and low-cost thin film solar cell. To achieve high energy conversion efficiency, polycrystalline CdTe films must go through an annealing process in an atmosphere containing chlorine. Numerous researches of the mechanisms of chlorine treatment have been conducted. It is generally believed that chlorine treatment can increase the quantum efficiency of CdTe, cause CdTe grain to recrystallize, and reduce the defect density. In 2014 a research discovered that after chlorine treatment, Cl atoms are segregated at grain boundaries of CdTe and form p-n-p junction, which can separate electrons and holes, thus inhibiting the carrier recombination at grain boundaries. Another first-principle calculation research claimed that Cl atoms form VCd-ClTe complex, which is also named A-center, and provide extra shallow p-energy level to improve shallow p-doping of CdTe. It seems that both segregation and doping of Cl atoms can enhance cell performance.To test whether chlorine doping can contribute to the enhancement of cell performance, in this work we study chlorine doping in CdTe absorption layer by experiment. We deposit chlorine doped CdTe (CdTe:Cl) film by well controlling the chlorine concentration ((1005) ppm) to investigate the effects of Cl doping on device performance. In this work, we also compare the lattice structure and electrical properties of CdTe:Cl films with those of conventional Cl treated CdTe films.The CdTe:Cl film deposited at low temperatures consists of both cubic and hexagonal phases. CdTe:Cl film deposited at high temperature consists of only cubic phase with (111) orientation. Phase structure remains stable after annealing. Serried twins can be observed in all CdTe:Cl rods and the twins each contain only several atom layers. The ultra-thin twins can be found in both as-deposited CdTe:Cl and post-annealing CdTe:Cl. There is neither separate conduction channel of electrons nor that of holes in CdTe:Cl. But for chlorine treated CdTe, grain boundaries are the conduction channels of electrons and holes traveling within grains. The resistivity of the CdTe:Cl film is found to increase drastically, and carrier density reduces to intrinsic state after annealing. The efficiency of CdTe:Cl cell is lower than that of chlorine treated CdTe cell. It seems that non-balanced heavy chlorine doping by magnetron sputtering is bad to CdTe absorption layer.
      通信作者: 刘向鑫, shinelu@mail.iee.ac.cn;zhangy@buaa.edu.cn ; 张跃, shinelu@mail.iee.ac.cn;zhangy@buaa.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA050609)、国家自然科学基金(批准号:61274060)和中国科学院创新交叉团队项目资助的课题.
      Corresponding author: Liu Xiang-Xin, shinelu@mail.iee.ac.cn;zhangy@buaa.edu.cn ; Zhang Yue, shinelu@mail.iee.ac.cn;zhangy@buaa.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050609), the National Natural Science Foundation of China (Grant No. 61274060), and the CAS Interdisciplinary Innovation Team.
    [1]

    Wu X 2004 Sol. Energy 77 814

    [2]

    Barth K L, Enzenroth R A, Sampath W S US Patent 6 423 565 [2002-07-23]

    [3]

    Geisthardt R M, Topič M, Sites J R 2015 IEEE J. Photovoltatics 5 1217

    [4]

    McCandless B E, Dobson K D 2004 Sol. Energy 77 839

    [5]

    Potter M D G, Cousins M, Durose K, Halliday D P 2000 J. Mater. Sci.- Mater. Electron. 11 525

    [6]

    Marfaing Y 2001 Thin Solid Films 387 123

    [7]

    Zhang S B, Wei S H, Zunger A 1998 J. Appl. Phys. 83 3192

    [8]

    Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Pennycook S J 2014 Phys. Rev. Lett. 112 156103

    [9]

    Zhu H, Gu M, Huang L, Wang J, Wu X 2014 Mater. Chem. Phys. 143 637

    [10]

    Mao D, Wickersham C E, Gloeckler M 2014 IEEE J. Photovoltatics 4 1655

    [11]

    Myers T H, Edwards S W, Schetzina J F 1981 J. Appl. Phys. 52 4231

    [12]

    Abbas A, West G D, Bowers J W, Isherwood P, Kaminski P M, Maniscalco B, Barth K L 2013 IEEE J. Photovoltatics 3 1361

    [13]

    Shaw D, Watson E 1984 J. Phys. C: Solid State Phys. 17 4945

    [14]

    Zia R, Saleemi F, Nassem S 2016 Optik 127 1972

    [15]

    Begam M R, Rao N M, Kaleemulla S, Shobana M, Krishna N S, Kuppan M 2013 J. Nano-Electron. Phys. 5 3019

    [16]

    Deivanayaki S, Jayamurugan P, Mariappan R, Ponnuswamy V 2010 Chalcogenide Lett. 7 159

    [17]

    Malzbender J, Jones E D, Shaw N, Mullin J B 1996 Semicond. Sci. Technol. 11 741

    [18]

    Jones E D, Malzbender J, Mullins J B, Shaw N 1994 J. Phys. Condens. Mat. 6 7499

    [19]

    Tai H, Hori S 1976 J. Jpn. Inst. Met. 40 722

    [20]

    Liu X X 2006 Ph. D. Dissertation (Ohio State: The University of Toledo)

    [21]

    Li C, Poplawsky J, Wu Y, Lupini A R, Mouti A, Leonard D N, Yan Y 2013 Ultramicroscopy 134 113

    [22]

    Li H, Liu X X, Lin Y S, Yang B, Du Z 2015 Phys. Chem. Chem. Phys. 17 11150

  • [1]

    Wu X 2004 Sol. Energy 77 814

    [2]

    Barth K L, Enzenroth R A, Sampath W S US Patent 6 423 565 [2002-07-23]

    [3]

    Geisthardt R M, Topič M, Sites J R 2015 IEEE J. Photovoltatics 5 1217

    [4]

    McCandless B E, Dobson K D 2004 Sol. Energy 77 839

    [5]

    Potter M D G, Cousins M, Durose K, Halliday D P 2000 J. Mater. Sci.- Mater. Electron. 11 525

    [6]

    Marfaing Y 2001 Thin Solid Films 387 123

    [7]

    Zhang S B, Wei S H, Zunger A 1998 J. Appl. Phys. 83 3192

    [8]

    Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Pennycook S J 2014 Phys. Rev. Lett. 112 156103

    [9]

    Zhu H, Gu M, Huang L, Wang J, Wu X 2014 Mater. Chem. Phys. 143 637

    [10]

    Mao D, Wickersham C E, Gloeckler M 2014 IEEE J. Photovoltatics 4 1655

    [11]

    Myers T H, Edwards S W, Schetzina J F 1981 J. Appl. Phys. 52 4231

    [12]

    Abbas A, West G D, Bowers J W, Isherwood P, Kaminski P M, Maniscalco B, Barth K L 2013 IEEE J. Photovoltatics 3 1361

    [13]

    Shaw D, Watson E 1984 J. Phys. C: Solid State Phys. 17 4945

    [14]

    Zia R, Saleemi F, Nassem S 2016 Optik 127 1972

    [15]

    Begam M R, Rao N M, Kaleemulla S, Shobana M, Krishna N S, Kuppan M 2013 J. Nano-Electron. Phys. 5 3019

    [16]

    Deivanayaki S, Jayamurugan P, Mariappan R, Ponnuswamy V 2010 Chalcogenide Lett. 7 159

    [17]

    Malzbender J, Jones E D, Shaw N, Mullin J B 1996 Semicond. Sci. Technol. 11 741

    [18]

    Jones E D, Malzbender J, Mullins J B, Shaw N 1994 J. Phys. Condens. Mat. 6 7499

    [19]

    Tai H, Hori S 1976 J. Jpn. Inst. Met. 40 722

    [20]

    Liu X X 2006 Ph. D. Dissertation (Ohio State: The University of Toledo)

    [21]

    Li C, Poplawsky J, Wu Y, Lupini A R, Mouti A, Leonard D N, Yan Y 2013 Ultramicroscopy 134 113

    [22]

    Li H, Liu X X, Lin Y S, Yang B, Du Z 2015 Phys. Chem. Chem. Phys. 17 11150

  • [1] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [2] 帅佳丽, 刘向鑫, 杨彪. 铁电半导体耦合薄膜电池中的反常载流子传输现象. 物理学报, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [3] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量. 物理学报, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [4] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [5] 赵华波, 王亮, 张朝晖. 钯金属吸附对半导体性碳纳米管电输运的影响. 物理学报, 2011, 60(8): 087302. doi: 10.7498/aps.60.087302
    [6] 赵华波, 李震, 李睿, 张朝晖, 张岩, 刘宇, 李彦. 碳纳米管网络导电特征的导电型原子力显微镜研究. 物理学报, 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
    [7] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [8] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响. 物理学报, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [9] 王震遐, 阮美玲, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究. 物理学报, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [10] 王震遐, 胡 均, 王玟珉, 俞国庆, 阮美龄. 石墨薄片弯曲度的高分辨率电子显微镜研究. 物理学报, 1998, 47(11): 1853-1857. doi: 10.7498/aps.47.1853
    [11] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [12] 李龙, 李方华, 杨大宇, 田静华, 林振金. Ce1+εFe4B4合金一维无公度调制结构的透射电子显微镜研究. 物理学报, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [13] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究. 物理学报, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [14] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相. 物理学报, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [15] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究. 物理学报, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [16] 温树林, 冯景伟. 高分辨电子显微镜研究α-Si3N4晶格缺陷. 物理学报, 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [17] 李方华, 樊汉节, 杨大宇, 傅平秋, 孔祐华. 黄河矿的电子显微镜研究. 物理学报, 1982, 31(5): 571-576. doi: 10.7498/aps.31.571
    [18] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法. 物理学报, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [19] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察. 物理学报, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
    [20] 李方华. 用高分辨电子显微镜测定晶体结构. 物理学报, 1977, 26(3): 193-198. doi: 10.7498/aps.26.193
计量
  • 文章访问数:  5245
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-01
  • 修回日期:  2017-01-18
  • 刊出日期:  2017-04-05

/

返回文章
返回