搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰气体加权和辐射模型综合评估及分析

楚化强 冯艳 曹文健 任飞 顾明言

引用本文:
Citation:

灰气体加权和辐射模型综合评估及分析

楚化强, 冯艳, 曹文健, 任飞, 顾明言

Comprehensive evaluation and analysis of the weighted-sum-of-gray-gases radiation model

Chu Hua-Qiang, Feng Yan, Cao Wen-Jian, Ren Fei, Gu Ming-Yan
PDF
导出引用
  • 在O2/CO2气氛下,参与性介质的非灰气体辐射特性表现出不同于空气气氛下的特性,因此,非灰气体辐射模型的选择和应用在换热过程中将变得十分重要.基于统计窄谱带模型,本文综合评估近年发展应用较广的灰气体加权和(WSGG)模型.结果表明,几种WSGG模型的预测值总体趋势正确,但仍存在着一定的差别.对于发射率,Dorigon等(2013 Int. J. Heat Mass Transfer 64 863)和Bordbar等(2014 Combust. Flame 161 2435)的WSGG模型与基准模型符合较好,相对误差小于20%.与离散坐标法结合,本文求解了PH2O/PCO2=1,2时的一维平行平板间辐射换热问题.结果显示,由Dorigon等和Bordbar等的WSGG模型得到的辐射热源和热流密度分布的相对误差均较小(10%左右).Johansson等(2011 Combust. Flame 158 893)和Bordbar等的WSGG模型具有更广的适用范围.
    In oxy-fuel combustion with CO2 recycle, the non-gray gas radiative heat transfer characteristics of gaseous participating media are different from those in air-fuel combustion. Therefore, the choice of a non-gray gas radiation model should be carefully made since it plays an important role in modeling the oxy-fuel combustion system. Using the statistical narrow-band model as a benchmark, in this paper we provide a comprehensive assessment of the development of the weighted-sum-of-gray-gase (WSGG) model, which has been achieved in recent years. The results show that the predicted values obtained by the WSGG model are generally reasonably accurate, though some significant differences still exist. For the total emissivity, the WSGG models by Dorigon et al. (2013 Int. J. Heat Mass Transfer 64 863) and Bordbar et al. (2014 Combust. Flame 161 2435) are consistent well with the benchmark model, within a relative error of less than about 20%. Under the conditions of PH2O/PCO2=1 and 2, the magnitudes of radiative heat transfer between two planar plates are calculated using the discrete-ordinate method and WSGG model. It is found that the radiative source and radiative net heat flux obtained using the WSGG model parameters of Dorigon et al. and Bordbar et al. are more accurate than using other parameters developed in the literature (about 10% relative errors). It is worth noting that the WSGG model parameters of Jonhansson et al. (2011 Combust. Flame 158 893) and Bordbar et al. have a wider range of applications.
      通信作者: 楚化强, hqchust@163.com;mingyan_gu@qq.com ; 顾明言, hqchust@163.com;mingyan_gu@qq.com
    • 基金项目: 国家自然科学基金(批准号:51676002,51376008,51306001)和安徽省自然科学基金(批准号:1408085QE100)资助的课题.
      Corresponding author: Chu Hua-Qiang, hqchust@163.com;mingyan_gu@qq.com ; Gu Ming-Yan, hqchust@163.com;mingyan_gu@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51676002, 51376008, 51306001) and the Anhui Provincial Natural Science Foundation, China (Grant No. 1408085QE100).
    [1]

    Modest M F 2013 Radiative Heat Transfer (3rd Ed.) (San Diego: Academic Press) p303

    [2]

    Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]

    [3]

    Lan L Q, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301 (in Chinese) [蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301]

    [4]

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204 (in Chinese) [张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204]

    [5]

    Wang M R, Cai T D 2015 Acta Phys. Sin. 64 213301 (in Chinese) [王敏锐, 蔡廷栋 2015 物理学报 64 213301]

    [6]

    Chu H Q, Liu F S, Zhou H C 2011 Int. J. Heat Mass Transfer 54 4736

    [7]

    Chu H Q, Liu F S, Zhou H C 2012 Int. J. Therm. Sci. 59 66

    [8]

    Hottel H C, Sarofim A F 1967 Radiative Transfer (New York: McGraw-Hill) p20

    [9]

    Smith T F, Shen Z F, Friedman J N 1982 J. Heat Transfer 104 602

    [10]

    Modest M F 1991 J. Heat Transfer 113 650

    [11]

    Soufiani A, Djavdan E 1994 Combust. Flame 97 240

    [12]

    Denison M K, Webb B W 1993 J. Heat Transfer 115 1004

    [13]

    Denison M K, Webb B W 1995 J. Heat Transfer 117 359

    [14]

    Choi C E, Baek S W 1996 Combust. Sci. Technol. 115 297

    [15]

    Yu M J, Baek S W, Park J H 2000 Int. J. Heat Mass Transfer 43 1699

    [16]

    Riviere P, Soufiani A, Taine J 1995 J. Quant. Spectrosc. Radiat. Transfer 53 335

    [17]

    Pierrot L, Riviere P, Soufiani A, Taine J 1999 J. Quant. Spectrosc. Radiat. Transfer 62 609

    [18]

    Yang S S, Song T H 1999 Int. J. Therm. Sci. 38 228

    [19]

    Liu F, Becker H A, Bindar Y 1998 Int. J. Heat Mass Transfer 41 3357

    [20]

    Johansson R, Leckner B, Andersson K, Johnsson F 2011 Combust. Flame 158 893

    [21]

    Yin C, Johansen L C R, Rosendahl L A, Kr S K 2010 Energy Fuels 24 6275

    [22]

    Kangwanpongpan T, Frana F H R, da Silva R C, Schneider P S, Krautz H J 2012 Int. J. Heat Mass Transfer 55 7419

    [23]

    Dorigon L J, Duciak G, Brittes R, Cassol F, Galarca M, Frana F H R 2013 Int. J. Heat Mass Transfer 64 863

    [24]

    Bordbar M H, Wecel G, Hyppnen T 2014 Combust. Flame 161 2435

    [25]

    Bahador M, Sunden B 2008 ASME Turbo Expo 2008: Power for Land, Sea, and Air Berlin, Germany, June 9-13, 2008 p1791

    [26]

    Soufiani A, Taine J 1997 Int. J. Heat Mass Transfer 40 987

    [27]

    Rivire P, Soufiani A 2012 Int. J. Heat Mass Transfer 55 3349

    [28]

    Liu F, Gulder O L, Smallwood G J 1998 Int. J. Heat Mass Transfer 41 2227

    [29]

    Cassol F, Brittes R, Frana F H R, Ezekoye O A 2014 Int. J. Heat Mass Transfer 79 796

  • [1]

    Modest M F 2013 Radiative Heat Transfer (3rd Ed.) (San Diego: Academic Press) p303

    [2]

    Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]

    [3]

    Lan L Q, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301 (in Chinese) [蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301]

    [4]

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204 (in Chinese) [张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204]

    [5]

    Wang M R, Cai T D 2015 Acta Phys. Sin. 64 213301 (in Chinese) [王敏锐, 蔡廷栋 2015 物理学报 64 213301]

    [6]

    Chu H Q, Liu F S, Zhou H C 2011 Int. J. Heat Mass Transfer 54 4736

    [7]

    Chu H Q, Liu F S, Zhou H C 2012 Int. J. Therm. Sci. 59 66

    [8]

    Hottel H C, Sarofim A F 1967 Radiative Transfer (New York: McGraw-Hill) p20

    [9]

    Smith T F, Shen Z F, Friedman J N 1982 J. Heat Transfer 104 602

    [10]

    Modest M F 1991 J. Heat Transfer 113 650

    [11]

    Soufiani A, Djavdan E 1994 Combust. Flame 97 240

    [12]

    Denison M K, Webb B W 1993 J. Heat Transfer 115 1004

    [13]

    Denison M K, Webb B W 1995 J. Heat Transfer 117 359

    [14]

    Choi C E, Baek S W 1996 Combust. Sci. Technol. 115 297

    [15]

    Yu M J, Baek S W, Park J H 2000 Int. J. Heat Mass Transfer 43 1699

    [16]

    Riviere P, Soufiani A, Taine J 1995 J. Quant. Spectrosc. Radiat. Transfer 53 335

    [17]

    Pierrot L, Riviere P, Soufiani A, Taine J 1999 J. Quant. Spectrosc. Radiat. Transfer 62 609

    [18]

    Yang S S, Song T H 1999 Int. J. Therm. Sci. 38 228

    [19]

    Liu F, Becker H A, Bindar Y 1998 Int. J. Heat Mass Transfer 41 3357

    [20]

    Johansson R, Leckner B, Andersson K, Johnsson F 2011 Combust. Flame 158 893

    [21]

    Yin C, Johansen L C R, Rosendahl L A, Kr S K 2010 Energy Fuels 24 6275

    [22]

    Kangwanpongpan T, Frana F H R, da Silva R C, Schneider P S, Krautz H J 2012 Int. J. Heat Mass Transfer 55 7419

    [23]

    Dorigon L J, Duciak G, Brittes R, Cassol F, Galarca M, Frana F H R 2013 Int. J. Heat Mass Transfer 64 863

    [24]

    Bordbar M H, Wecel G, Hyppnen T 2014 Combust. Flame 161 2435

    [25]

    Bahador M, Sunden B 2008 ASME Turbo Expo 2008: Power for Land, Sea, and Air Berlin, Germany, June 9-13, 2008 p1791

    [26]

    Soufiani A, Taine J 1997 Int. J. Heat Mass Transfer 40 987

    [27]

    Rivire P, Soufiani A 2012 Int. J. Heat Mass Transfer 55 3349

    [28]

    Liu F, Gulder O L, Smallwood G J 1998 Int. J. Heat Mass Transfer 41 2227

    [29]

    Cassol F, Brittes R, Frana F H R, Ezekoye O A 2014 Int. J. Heat Mass Transfer 79 796

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐. 物理学报, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] 程柏璋, 祝玉林, 伊洋, 陶鑫, 贾岩, 刘东青, 程海峰. 电致红外发射率动态调控器件研究进展. 物理学报, 2021, 70(20): 204205. doi: 10.7498/aps.70.20210211
    [4] 程柏璋, 刘东青. 电致红外发射率动态调控器件研究进展. 物理学报, 2021, (): .
    [5] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [6] 许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明. 基于气体折射率方法的真空计量. 物理学报, 2020, 69(15): 150601. doi: 10.7498/aps.69.20200706
    [7] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析. 物理学报, 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [8] 章孝顺, 章定国, 陈思佳, 洪嘉振. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [9] 张璐, 董云松, 景龙飞, 林雉伟, 谭秀兰, 况龙钰, 黎航, 尚万里, 张文海, 李志超, 詹夏宇, 袁光辉, 李海, 江少恩, 杨家敏, 丁永坤. 低密度泡沫金提升黑腔腔壁再发射率的实验研究. 物理学报, 2016, 65(1): 015202. doi: 10.7498/aps.65.015202
    [10] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法. 物理学报, 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [11] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [12] 杜海伟, 陈民, 张凯云, 盛政明, 张杰. 少周期激光脉冲与气体作用产生的离化电流和THz波辐射. 物理学报, 2012, 61(17): 174205. doi: 10.7498/aps.61.174205
    [13] 金铭, 白明, 苗俊刚. 阵列型微波黑体的发射率分析. 物理学报, 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [14] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究. 物理学报, 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [15] 张维佳, 王天民, 钟立志, 吴小文, 崔 敏. ITO导电膜红外发射率理论研究. 物理学报, 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [16] 郭 红, 李高翔, 彭金生. 由灰体辐射场驱动的二能级原子的发射谱. 物理学报, 2000, 49(5): 887-892. doi: 10.7498/aps.49.887
    [17] 吴振森, 王一平. 直接模拟法和统计估计法研究平面波通过离散随机介质的散射. 物理学报, 1988, 37(4): 698-704. doi: 10.7498/aps.37.698
    [18] 路轶群, 张冰. 惰性气体中Rb原子的新的受激辐射. 物理学报, 1988, 37(9): 1510-1516. doi: 10.7498/aps.37.1510
    [19] 郭光灿, 夏云杰. 气体Cerenkov辐射的量子理论. 物理学报, 1988, 37(8): 1333-1340. doi: 10.7498/aps.37.1333
    [20] 包科达. 稠密气体中的输运现象和方位势氩的粘滞率和热导率. 物理学报, 1983, 32(6): 730-749. doi: 10.7498/aps.32.730
计量
  • 文章访问数:  6035
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-02-24
  • 刊出日期:  2017-05-05

/

返回文章
返回