搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究

熊梦杰 李进延 罗兴 沈翔 彭景刚 李海清

引用本文:
Citation:

新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究

熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清

Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber

Xiong Meng-Jie, Li Jin-Yan, Luo Xing, Shen Xiang, Peng Jing-Gang, Li Hai-Qing
PDF
导出引用
  • 提出并制备了一种新型微结构纤芯光子晶体光纤,即在椭圆纤芯中增加一排亚微米级的空气孔,提高了光纤的双折射值,改变了两个偏振基模的色散特性.通过有限元法数值模拟了该光纤的双折射、非线性和色散等特性,并优化结构参数.使用脉宽为15 ps,重复频率为45 MHz的激光抽运该光纤,通过调节抽运激光入射的偏振方向,实现了可调谐的宽带超连续谱.实验研究了输入激光的功率和偏振方向对超连续谱的影响,以及输出超连续谱的偏振特性:当脉冲偏振方向沿着主轴入射时,得到了800–1500 nm的线偏振超连续谱,输出谱的消光比为21.2 dB;当脉冲偏振方向逐渐远离主轴时,输出超连续谱的谱宽逐渐变窄,并且在与主轴呈处达到最小值.维持抽运脉冲功率不变,仅改变脉冲入射的偏振方向,能够实现300 nm谱宽可调谐的超连续谱.
    We report on a new kind of highly birefringent and highly nonlinear photonic crystal fiber with a row of sub-micron air hole in the fiber core. The diameters of air holes in fiber core and cladding are 0.2 μm and 6.6 μ$m respectively. The parameters of birefringence, nonlinear and dispersion coefficient of the fiber are simulated by finite element method. It is found that the birefringence of the fiber can exist at the wavelengths up to 1550 nm, which is one order of magnitude higher than that of the traditional polarization-maintaining fiber. The zero-dispersion wavelengths of the fast axis and slow axis are 1050 nm and 1080 nm respectively. This fiber has a clear advantage over conventional fiber in continuum generation. Firstly, the polarization state of the pulse traveling in the fiber can be sustained along the fiber length and the extinction ratio is more than 20 dB. In addition, the pulses travel at different group velocities along the two polarization directions, which provide a convenient way of tuning the properties of the generated supercontinuum. Using this fiber as a nonlinear medium, an efficient generation of a tunable supercontinuum is demonstrated by pumping with 15 ps pulses of 1040 nm laser radiation, which is located in the normal dispersion region. A half-wave plate is used to vary the input polarization of the light pulse launched into the fiber, and the polarization of output supercontinuum is adjusted by a Glan prism at the same time. It is experimentally found that the polarization of pulse has a significant influence on the generation of the supercontinuum. When the linear polarization of the input pulse matches with the direction of the main axis of the fiber, the supercontinuum can be broadened over wavelength range of 800-1500 nm, and the extinction ratio is 21.2 dB. The polarization direction of the output SC is found to coincide with the pump pulse. When the angle between the polarization of the input pulse and the fast axis is increased to 45 degrees, the output supercontinuum is circularly polarized and becomes narrowest, extending from 900 to 1300 nm. So we can realize the wide tuning of a supercontinuum by only changing the polarization direction of the incident pulse. Under the circumstances, the pulse in optical fiber can be broken into two components along the main axis respectively. If the input polarization direction is away from both principal axis directions, the power along the main axis and the contribution of cross phase modulation are reduced because of the walk-off effect, so the width of the supercontinuum will become narrower. It is suggested that this type of high birefringence photonic crystal fiber could be effectively applied to the generation of the tunable supercontinuum.
      通信作者: 李进延, ljy@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61535009)资助的课题.
      Corresponding author: Li Jin-Yan, ljy@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61535009).
    [1]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584

    [2]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25

    [3]

    Wang Z X, Liu J S, Li R X, Xu Z Z 2009 Opt. Express 17 13841

    [4]

    Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S 2002 J. Opt. Soc. Am. B 19 765

    [5]

    Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 物理学报 53 4243]

    [6]

    Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S 2001 Opt. Lett. 26 608

    [7]

    Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J, Russell P S J 2000 Phys. Rev. Lett. 85 2264

    [8]

    Moeser J T, Wolchover N A, Knight J C, Omenetto F G 2007 Opt. Lett. 32 952

    [9]

    Konorov S O, Zheltikov A M 2003 Opt. Express 11 2440

    [10]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233

    [11]

    Fsaifes I, Cordette S, Tonello A, Couderc V, Lepers C, Ware C, Leproux P, Buy-Lesvigne C 2010 Photon. Technol. Lett. 22 1367

    [12]

    Begum F, Namihira Y, Kinjo T, Kaijage S 2011 Opt. Commun. 284 965

    [13]

    Schmitt S, Ficker J, Wolff M, Konig F, Sizmann A, Leuchs G 1998 Phys. Rev. Lett. 81 2446

    [14]

    Silberhorn C, Lam P K, Wei O, Konig F, Korolkova N, Leuchs G 2001 Phys. Rev. Lett. 86 4267

    [15]

    Tsai K H, Kim K S, Morse T F 1991 J. Lightwave Technol. 9 7

    [16]

    Lehtonen M, Genty G, Ludvigsen H, Kaivola M 2003 Appl. Phys. Lett. 82 2197

    [17]

    Proulx A, Menard J M, Hô N, Laniel J M, Vallée R, Paré C 2003 Opt. Express 11 3338

    [18]

    Xiong C, Wadsworth W J 2008 Opt. Express 16 2438

    [19]

    Zhao Y Y, Zhou G Y, Li J S, Han Y, Wang C, Wang W 2013 Acta Phys. Sin. 62 214212 (in Chinese) [赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟 2013 物理学报 62 214212]

    [20]

    Yao Y Y 2009 M. S. Thesis (Yanshan: Yanshan University) (in Chinese) [姚艳艳 2009 硕士学位论文 (秦皇岛: 燕山大学)]

  • [1]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584

    [2]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25

    [3]

    Wang Z X, Liu J S, Li R X, Xu Z Z 2009 Opt. Express 17 13841

    [4]

    Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S 2002 J. Opt. Soc. Am. B 19 765

    [5]

    Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 物理学报 53 4243]

    [6]

    Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S 2001 Opt. Lett. 26 608

    [7]

    Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J, Russell P S J 2000 Phys. Rev. Lett. 85 2264

    [8]

    Moeser J T, Wolchover N A, Knight J C, Omenetto F G 2007 Opt. Lett. 32 952

    [9]

    Konorov S O, Zheltikov A M 2003 Opt. Express 11 2440

    [10]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233

    [11]

    Fsaifes I, Cordette S, Tonello A, Couderc V, Lepers C, Ware C, Leproux P, Buy-Lesvigne C 2010 Photon. Technol. Lett. 22 1367

    [12]

    Begum F, Namihira Y, Kinjo T, Kaijage S 2011 Opt. Commun. 284 965

    [13]

    Schmitt S, Ficker J, Wolff M, Konig F, Sizmann A, Leuchs G 1998 Phys. Rev. Lett. 81 2446

    [14]

    Silberhorn C, Lam P K, Wei O, Konig F, Korolkova N, Leuchs G 2001 Phys. Rev. Lett. 86 4267

    [15]

    Tsai K H, Kim K S, Morse T F 1991 J. Lightwave Technol. 9 7

    [16]

    Lehtonen M, Genty G, Ludvigsen H, Kaivola M 2003 Appl. Phys. Lett. 82 2197

    [17]

    Proulx A, Menard J M, Hô N, Laniel J M, Vallée R, Paré C 2003 Opt. Express 11 3338

    [18]

    Xiong C, Wadsworth W J 2008 Opt. Express 16 2438

    [19]

    Zhao Y Y, Zhou G Y, Li J S, Han Y, Wang C, Wang W 2013 Acta Phys. Sin. 62 214212 (in Chinese) [赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟 2013 物理学报 62 214212]

    [20]

    Yao Y Y 2009 M. S. Thesis (Yanshan: Yanshan University) (in Chinese) [姚艳艳 2009 硕士学位论文 (秦皇岛: 燕山大学)]

  • [1] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇. 高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生. 物理学报, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [2] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [3] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [4] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤. 物理学报, 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [5] 刘双龙, 陈丹妮, 刘伟, 牛憨笨. 基于全正色散光子晶体光纤的超连续谱光源. 物理学报, 2013, 62(18): 184210. doi: 10.7498/aps.62.184210
    [6] 王威彬, 杨华, 唐平华, 韩芳. 光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究. 物理学报, 2013, 62(18): 184202. doi: 10.7498/aps.62.184202
    [7] 曹晔, 李荣敏, 童峥嵘. 一种新型高双折射光子晶体光纤特性研究. 物理学报, 2013, 62(8): 084215. doi: 10.7498/aps.62.084215
    [8] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究. 物理学报, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [9] 许强, 苗润才, 张亚妮. 六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应. 物理学报, 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [10] 李荧, 侯静, 王彦斌, 靳爱军, 姜宗福. 高相干度超连续谱产生的理论研究. 物理学报, 2012, 61(9): 094212. doi: 10.7498/aps.61.094212
    [11] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [12] 宋锐, 侯静, 陈胜平, 王彦斌, 陆启生. 177.6 W全光纤超连续谱光源. 物理学报, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [13] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [14] 李建锋, 周桂耀, 侯蓝田. 光子晶体光纤超连续谱的孤子俘获数值研究. 物理学报, 2012, 61(12): 124203. doi: 10.7498/aps.61.124203
    [15] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [16] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究. 物理学报, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [17] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [18] 刘卫华, 王屹山, 刘红军, 段作梁, 赵 卫, 李永放, 彭钦军, 许祖彦. 初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响. 物理学报, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [19] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [20] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
计量
  • 文章访问数:  5250
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-01-18
  • 刊出日期:  2017-05-05

/

返回文章
返回