搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiMgPO4:Tm,Tb的热释光和光释光陷阱参数

郭竞渊 唐强 唐桦明 张纯祥 罗达玲 刘小伟

引用本文:
Citation:

LiMgPO4:Tm,Tb的热释光和光释光陷阱参数

郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达玲, 刘小伟

Thermoluminescence and optical stimulated luminescence trap parameters of LiMgPO4: Tm, Tb

Guo Jing-Yuan, Tang Qiang, Tang Hua-Ming, Zhang Chun-Xiang, Luo Da-Ling, Liu Xiao-Wei
PDF
导出引用
  • 采用高温固相法合成了LiMgPO4:Tm,Tb粉末样品,测定了热释光陷阱参数激发能E 和频率因子s.用脉冲退火和多次退火方法研究了其光释光陷阱参数E和s,并与用多速法得到的热释光的结果进行了比较.对不同射线剂量照射的样品发光曲线的研究表明,300 ℃高温峰属于一级动力学发光峰.通过对热释光和光释光陷阱的相关性研究表明,经200 ℃预热的热释光信号(对应于300 ℃高温峰)和光释光信号很有可能来自于同一深度的陷阱.
    In recent years, the preparation and luminescent properties of LiMgPO4 as a matrix have received much attention, but most of the studies are limited to the trap parameters of thermoluminescence (TL), which do not involve the trap parameters of optical stimulated luminescence (OSL). In this paper, LiMgPO4:Tm, Tb powder samples are synthesized by solid-state reaction at high temperature. All the experiments reported here are measured by Riso TL/OSL-15-B/C reader after being irradiated by beta-rays. The TL glow curves obtained show that the high temperature peak at 300℃ belongs to the first-order kinetic peak because the peak temperature does not change as irradiation dose increases. Based on the first-order kinetics, the TL trap depth E = 1.72 eV and the frequency factor s= 3.97 1014 are determined by the methods of various heating rates.However, LiMgPO4:Tm, Tb is also an OSL material, the analysis of its OSL trap kinetic parameters would help to understand the OSL mechanism and to know the relationship between TL and OSL traps. The pulse annealing method is suitable for OSL trap parameter analysis. For low sensitivity samples, the fluctuation of the pulse annealing method is relatively large. And this method only records the OSL signal of fast decay component, which is suitable for measuring the samples with high sensitivity and fast fading OSL signals. In order to study the OSL signal of slow decay component, the multiple annealing method is proposed based on the pulse annealing method. The multiple annealing procedure is as follows. Firstly, the sample is annealed from room temperature to 500℃ which lasts 30 s. The heating rate is 5℃/s. Secondly, the sample is irradiated with 90Sr beta radiation doses of 1 Gy. Thirdly, the sample is preheated to 150℃ with a heating rate of 0.2 ℃/s. And then OSL measurement lasts 500 s after cooling to room temperature. The above steps are repeated in preheating temperature steps of 10℃. Four repetitive measurements are made for each preheating rate. The preheating rates are 0.2, 0.5, 1, and 2℃/s.Finally, the OSL trap parameters E = 1.69 eV and s = 1.05 1014 are determined by the multiple annealing method. The correlation between TL and OSL trap parameters shows that the TL and OSL signals are likely to come from the same traps. Besides, the trap depth of the main peak of the phosphor shows that the sample has better thermal stability than those of the other phosphors of LiMgPO4 as the matrix.
      通信作者: 唐强, ststq@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11375278)、广东省自然科学基金(批准号:2016A030313276)和广州市科技计划项目(批准号:20160701168)资助的课题;
      Corresponding author: Tang Qiang, ststq@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375278), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313276) and Guangzhou Science and Technology Project, China (Grant No. 20160701168).
    [1]

    Dhabekar B, Menon S N, Raja E A, Singh A K, Chougaokar M P, Mayya Y S 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1844

    [2]

    Menon S N, Dhabekar B, Raja E A, Chouhaonkar M P 2012 Radiat. Meas. 47 236

    [3]

    Gai M Q, Chen Z Y, Fan Y W, Wang J H 2013 J. Rare Earth 31 551

    [4]

    Gai M Q, Chen Z Y, Fan Y W, Yan S Y, Xie Y X, Wang J H, Zhang Y G 2015 Radiat. Meas. 78 48

    [5]

    Guo J Y, Tang Q, Zhang C X, Luo D L, Liu X W J. Rare Earth (in Press)

    [6]

    Randall J T, Wilkins M H F 1945 Proc. Phys. Soc. 184 366

    [7]

    Garlick G F J, Gibson A F 1948 Proc. Phys. Soc. 60 574

    [8]

    Chen R, Kirsh Y 1981 Analysisi of Thermally Stimulated Processes (Oxford: Pergamon Press)

    [9]

    Li S H, Chen G 2001 J. Phys. D 34 493

    [10]

    Pagonis V, Wintle A G, Chen R 2007 Radiat. Meas. 42 1587

    [11]

    Bulur E, BØtter-Jensen L, Murray A S 2000 Radiat. Meas. 32 407

    [12]

    Mahesh K, Weng P S, Furetta C 1989 Thermoluminescence in Solids and its Applications (England: Nuclear Technology Publishing)

    [13]

    Zhang C X, Tang Q, Luo D Y 2002 Acta Phys. Sin. 51 2881 (in Chinese) [张纯祥, 唐强, 罗达玲 2002 物理学报 51 2881]

    [14]

    Hoogenstraaten W 1958 Philips Res. Rep. 13 515

    [15]

    Li S H, Tso M Y W, Wong N W 1997 Radiat. Meas. 27 43

    [16]

    Bajaj N S, Palan C B, Koparkar K A, Kulkarni M S, Omanwar S K 2016 J. Lumin. 175 9

  • [1]

    Dhabekar B, Menon S N, Raja E A, Singh A K, Chougaokar M P, Mayya Y S 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1844

    [2]

    Menon S N, Dhabekar B, Raja E A, Chouhaonkar M P 2012 Radiat. Meas. 47 236

    [3]

    Gai M Q, Chen Z Y, Fan Y W, Wang J H 2013 J. Rare Earth 31 551

    [4]

    Gai M Q, Chen Z Y, Fan Y W, Yan S Y, Xie Y X, Wang J H, Zhang Y G 2015 Radiat. Meas. 78 48

    [5]

    Guo J Y, Tang Q, Zhang C X, Luo D L, Liu X W J. Rare Earth (in Press)

    [6]

    Randall J T, Wilkins M H F 1945 Proc. Phys. Soc. 184 366

    [7]

    Garlick G F J, Gibson A F 1948 Proc. Phys. Soc. 60 574

    [8]

    Chen R, Kirsh Y 1981 Analysisi of Thermally Stimulated Processes (Oxford: Pergamon Press)

    [9]

    Li S H, Chen G 2001 J. Phys. D 34 493

    [10]

    Pagonis V, Wintle A G, Chen R 2007 Radiat. Meas. 42 1587

    [11]

    Bulur E, BØtter-Jensen L, Murray A S 2000 Radiat. Meas. 32 407

    [12]

    Mahesh K, Weng P S, Furetta C 1989 Thermoluminescence in Solids and its Applications (England: Nuclear Technology Publishing)

    [13]

    Zhang C X, Tang Q, Luo D Y 2002 Acta Phys. Sin. 51 2881 (in Chinese) [张纯祥, 唐强, 罗达玲 2002 物理学报 51 2881]

    [14]

    Hoogenstraaten W 1958 Philips Res. Rep. 13 515

    [15]

    Li S H, Tso M Y W, Wong N W 1997 Radiat. Meas. 27 43

    [16]

    Bajaj N S, Palan C B, Koparkar K A, Kulkarni M S, Omanwar S K 2016 J. Lumin. 175 9

  • [1] 李哲旭, 李新换, 贺三军, 周芷千, 刘丽艳, 于万瑭, 赵修良. NaCl:Cu烧结剂量片在X/γ辐照下的光释光特性. 物理学报, 2022, 71(13): 137801. doi: 10.7498/aps.71.20220014
    [2] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [3] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [4] 佟曼, 范天伟, 陈云琳. 畴腐蚀掺镁铌酸锂可调阵列光分束器的研究. 物理学报, 2016, 65(1): 014215. doi: 10.7498/aps.65.014215
    [5] 吴丽, 王倩, 李国栋, 窦巧娅, 吉旭. 不同退火温度的Al2O3:C薄膜热释光和光释光性能. 物理学报, 2016, 65(3): 037802. doi: 10.7498/aps.65.037802
    [6] 罗达玲, 唐强, 郭竞渊, 张纯祥. MSO4:Eu2+(M =Mg, Ca, Sr, Ba)的等电子陷阱与热释光特性. 物理学报, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [7] 胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强. 不同粒径-Al2O3:C晶态粉体热释光和光释光特性. 物理学报, 2012, 61(15): 157802. doi: 10.7498/aps.61.157802
    [8] 周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰. 非晶硅光伏电池表面高效光陷阱结构设计. 物理学报, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [9] 张斌, 张浩佳, 杨秋红, 陆神洲. α-Al2O3透明陶瓷的发光及热释光特性. 物理学报, 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [10] 杨新波, 李红军, 徐 军, 程 艳, 苏良碧, 唐 强. α-Al2O3:C晶体的热释光和光释光特性. 物理学报, 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [11] 吴 波, 蔡双双, 沈剑威, 沈永行. 基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器. 物理学报, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [12] 唐 强, 张纯祥, 梁宝鎏, 李德卉, 罗达玲. SrSO4:Eu磷光体的光释光特性. 物理学报, 2005, 54(1): 64-69. doi: 10.7498/aps.54.64
    [13] 刘劲松. 非对称光折变全息空间光孤子的存在曲线. 物理学报, 2004, 53(9): 3014-3019. doi: 10.7498/aps.53.3014
    [14] 张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲. α-Al2O3单晶的热释光和光释光特性. 物理学报, 2004, 53(1): 291-295. doi: 10.7498/aps.53.291
    [15] 薛挺, 于建, 杨天新, 倪文俊, 谭莉, 李世忱. 周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析. 物理学报, 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [16] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [17] 刘建军, 张万林, 张光寅. 掺镁铌酸锂晶体的缺陷结构及其结晶化学分析. 物理学报, 1996, 45(11): 1852-1858. doi: 10.7498/aps.45.1852
    [18] 阙文修, 姚熹. 镁离子内扩散铌酸锂研究(Ⅰ)——电子探针显微分析表征. 物理学报, 1995, 44(4): 606-613. doi: 10.7498/aps.44.606
    [19] 刘劲松. 影响光折变晶体双光束耦合温度效应的参数理论分析. 物理学报, 1993, 42(7): 1086-1091. doi: 10.7498/aps.42.1086-2
    [20] 陈一询, 徐叙瑢. 关于加热发光曲线的分析. 物理学报, 1959, 15(7): 393-396. doi: 10.7498/aps.15.393
计量
  • 文章访问数:  4932
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-03-05
  • 刊出日期:  2017-05-05

/

返回文章
返回