搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

染料掺杂液晶可调谐光纤荧光光源的研究

吕月兰 尹向宝 杨月 刘永军 苑立波

引用本文:
Citation:

染料掺杂液晶可调谐光纤荧光光源的研究

吕月兰, 尹向宝, 杨月, 刘永军, 苑立波

Tuning characteristics of fluorescent light source by dye-doped liquid crystal filled hollow fiber

Lü Yue-Lan, Yin Xiang-Bao, Yang Yue, Liu Yong-Jun, Yuan Li-Bo
PDF
导出引用
  • 本文提出了染料掺杂液晶填充空心光纤构造荧光可调谐光源.基于染料分子能级结构理论分析B4400荧光光谱依赖温度的变化特性,采用脉宽8 ns,波长为532 nm YAG倍频脉冲激光器抽运,向列相液晶作基体,实验分析染料B4400掺杂液晶填充空心光纤荧光光谱选择性荧光放大规律及温度调谐特性.结果表明:通过控制染料浓度可控制荧光输出功率水平;当温度升高时,中心波长发生红移,中心波长调谐范围为590605 nm;荧光谱宽呈单调展宽,调制范围为228236 nm;染料掺杂液晶填充空心光纤荧光光源可实现一定范围内的温度调谐.
    The fluorescent fiber light source has been widely used in many areas, such as optical fiber communication and medical imaging, owing to its low cost and wide optical spectrum. The temperature-sensitive refractive index of liquid crystal makes it a suitable filling material used in the fluorescent light source. The existing work has investigated the filling of liquid crystal into the air holes in cladding of photonic crystal fiber. However, the photonic crystal fiber has the disadvantages of complicated craft and high cost. As is well known, the hollow fiber has the advantages of the easy preparation and low cost, but the filling of liquid crystal into the hollow fiber of fluorescent light source is rarely investigated. In this paper, we investigate that a tunable hollow fiber of fluorescent light source is filled with dye doped liquid crystals. The transmission characteristics of the fluorescent light source are theoretically analyzed. The variation in property of the B4400 fluorescent spectrum is numerically discussed with the dye molecule energy level structure theory. The numerical simulation results show that the relative refractive index is dependent on temperature. It first increases linearly with the increase of temperature and then exponentially increases rapidly till clearing point 61.9 C, finally decreases slowly to a saturated value. In order to find an optimum doping concentration, the doping-concentration-dependent fluorescence output intensity is analyzed by using the super continuum spectrum of YAG pump with a wavelength of 1064 nm. The fluorescence light intensities are amplified at three different selective dye doping concentrations, namely 0.2 wt%, 1 wt% and 2 wt% in the experiment, respectively. The highest output is obtained at the 1 wt% doping concentration, which verifies the selective fluorescence amplification property of the fluorescent source. It is also demonstrated that the transmission characteristics and the tunable range of the liquid crystal filled fluorescent light source can be adjusted by modulating the temperature in experiment. And the temperature-dependence of the fluorescence source is experimentally demonstrated by using the 1 wt% doping concentration dye-doped liquid crystal. Using a pulsed YAG pump with a wavelength of 532 nm, tunable characteristics of the fluorescent light source composed of a dye-doped liquid crystal filled hollow fiber, are studied and show that the central wavelength increases from 590 nm to 605 nm and the spectral width broadens from 228 nm to 236 nm with the increase of the temperature. The proposed fluorescent light source can be controlled by adjusting the temperature within limits. These findings will give a guidance for the practical applications of the dye doped liquid crystal based fluorescent light source, and offer a theoretical foundation for the further study of the liquid crystal filled fluorescent fiber light source.
      通信作者: 刘永军, liuyj@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1531102,61107059,61290314)资助的课题.
      Corresponding author: Liu Yong-Jun, liuyj@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.U1531102,61107059,61290314).
    [1]

    Miao Y P, Liu B, Zhang K L, Liu Y, Zhang H 2011 Appl. Phys. Lett. 98 021103

    [2]

    Yan L S, Yi A, Pan W 2010 IEEE Photon. Technol. Lett. 22 1391

    [3]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [4]

    Ren C Y, Shi H X, Ai Y B, Yin X B 2016 Chin. Phys. B 25 094218

    [5]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [6]

    Lee S, Park J, Jeong Y, Jung H 2009 J. Lightwave Technol. 27 4919

    [7]

    Yu G Y, Song Y F, Wang Y, He X, Liu Y Q, Liu W L, Yang Y Q 2011 Chem. Phys. Lett. 517 242

    [8]

    Qiu X Q, Li X T, Niu K, Lee S Y 2011 J. Raman Spectrosc. 42 563

    [9]

    Qian W W, Zhao C L, He S L, Dong X Y, Zhang S Q, Zhang Z X, Jin S Z, Gou J T, Wei H F 2011 Opt. Lett. 36 1548

    [10]

    Wang D D, Wang L L, Li D D 2011 Acta Phys. Sin. 61 128101 (in Chinese) [王豆豆, 王丽莉, 李冬冬 2011 物理学报 61 128101]

    [11]

    Marzena M T, Sławomir E, Tomasz R W 2013 Photon. Lett. 5 14

    [12]

    Wu R N, Wu X J, Wu J, Dai Q 2015 Acta Opt. Sin. 35 0223003 (in Chinese) [乌日娜, 邬小娇, 吴杰, 岱钦 2015 光学学报 35 0223003]

    [13]

    Fan R W, Liu W, Li X H, Zhang X L, Xia Y Q, Chen D Y 2007 Infrared and Laser Eng. 36 50 (in Chinese) [樊荣伟, 刘维, 李晓晖, 张秀丽, 夏元钦, 陈德应 2007 红外与激光工程 36 50]

    [14]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [15]

    Yu Z, Li W, Hagen J A, Zhou Y, Klotzkin D 2007 Appl. Opt. 46 1507

    [16]

    Zhan Y B, He L, Mo J Y, Li R H 2014 Chin. J. Lumin. 35 269 (in Chinese) [詹永波, 何磊, 磨俊宇, 李润华 2014 发光学报 35 269]

    [17]

    Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 1526 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 1526]

    [18]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [19]

    Ozbek H, Ustunel S, Kutlu E, Cetinkaya M C 2014 J. Molecular Liquids 199 275

    [20]

    Bi W H, Wang Y Y, Fu G W, Wang X Y, Li C L 2016 Acta Phys. Sin. 65 047801 (in Chinese) [毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽 2016 物理学报 65 047801]

    [21]

    Ma H, Wang J Z, Abakar A M A, Yang M C, Zhao X, Liu L H 2016 Laser Optoelectron. Prog. 5 213 (in Chinese) [马洪虎, 王金忠, Abakar A M A, 杨明超, 赵霞, 刘礼华 2016 激光与光电子学进展 5 213]

  • [1]

    Miao Y P, Liu B, Zhang K L, Liu Y, Zhang H 2011 Appl. Phys. Lett. 98 021103

    [2]

    Yan L S, Yi A, Pan W 2010 IEEE Photon. Technol. Lett. 22 1391

    [3]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [4]

    Ren C Y, Shi H X, Ai Y B, Yin X B 2016 Chin. Phys. B 25 094218

    [5]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [6]

    Lee S, Park J, Jeong Y, Jung H 2009 J. Lightwave Technol. 27 4919

    [7]

    Yu G Y, Song Y F, Wang Y, He X, Liu Y Q, Liu W L, Yang Y Q 2011 Chem. Phys. Lett. 517 242

    [8]

    Qiu X Q, Li X T, Niu K, Lee S Y 2011 J. Raman Spectrosc. 42 563

    [9]

    Qian W W, Zhao C L, He S L, Dong X Y, Zhang S Q, Zhang Z X, Jin S Z, Gou J T, Wei H F 2011 Opt. Lett. 36 1548

    [10]

    Wang D D, Wang L L, Li D D 2011 Acta Phys. Sin. 61 128101 (in Chinese) [王豆豆, 王丽莉, 李冬冬 2011 物理学报 61 128101]

    [11]

    Marzena M T, Sławomir E, Tomasz R W 2013 Photon. Lett. 5 14

    [12]

    Wu R N, Wu X J, Wu J, Dai Q 2015 Acta Opt. Sin. 35 0223003 (in Chinese) [乌日娜, 邬小娇, 吴杰, 岱钦 2015 光学学报 35 0223003]

    [13]

    Fan R W, Liu W, Li X H, Zhang X L, Xia Y Q, Chen D Y 2007 Infrared and Laser Eng. 36 50 (in Chinese) [樊荣伟, 刘维, 李晓晖, 张秀丽, 夏元钦, 陈德应 2007 红外与激光工程 36 50]

    [14]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [15]

    Yu Z, Li W, Hagen J A, Zhou Y, Klotzkin D 2007 Appl. Opt. 46 1507

    [16]

    Zhan Y B, He L, Mo J Y, Li R H 2014 Chin. J. Lumin. 35 269 (in Chinese) [詹永波, 何磊, 磨俊宇, 李润华 2014 发光学报 35 269]

    [17]

    Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 1526 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 1526]

    [18]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [19]

    Ozbek H, Ustunel S, Kutlu E, Cetinkaya M C 2014 J. Molecular Liquids 199 275

    [20]

    Bi W H, Wang Y Y, Fu G W, Wang X Y, Li C L 2016 Acta Phys. Sin. 65 047801 (in Chinese) [毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽 2016 物理学报 65 047801]

    [21]

    Ma H, Wang J Z, Abakar A M A, Yang M C, Zhao X, Liu L H 2016 Laser Optoelectron. Prog. 5 213 (in Chinese) [马洪虎, 王金忠, Abakar A M A, 杨明超, 赵霞, 刘礼华 2016 激光与光电子学进展 5 213]

  • [1] 王紫凌, 叶家耀, 黄志军, 宋振鹏, 李炳祥, 肖瑞林, 陆延青. 负性向列相液晶电致缺陷的产生与湮灭过程. 物理学报, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] 陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷. 向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立. 物理学报, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [3] 汪浩然, 张银川, 胡巍, 郭旗. 向列相液晶的饱和非线性及双稳态孤子. 物理学报, 2023, 72(7): 074204. doi: 10.7498/aps.72.20222088
    [4] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应. 物理学报, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [5] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 物理学报, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [6] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究. 物理学报, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [7] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [8] 刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽. 向列相液晶染料可调谐激光器的研究. 物理学报, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [9] 王卓, 王与烨, 姚建铨, 王鹏. 周期结构GaAs晶体ps脉冲差频产生窄带THz辐射的研究. 物理学报, 2010, 59(5): 3249-3254. doi: 10.7498/aps.59.3249
    [10] 唐先柱, 鲁兴海, 彭增辉, 刘永刚, 宣丽. 铁电液晶螺旋结构的理论近似研究. 物理学报, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [11] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [12] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究. 物理学报, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [13] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [14] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用. 物理学报, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [15] 龙学文, 胡 巍, 张 涛, 郭 旗, 兰 胜, 高喜存. 向列相液晶中强非局域空间光孤子传输的理论研究. 物理学报, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [16] 展凯云, 裴延波, 侯春风. 向列相液晶中空间光孤子的观测. 物理学报, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [17] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [18] 韩 群, 吕可诚, 李家方, 李乙钢, 陈胜平1. 一种新颖的光纤光栅温度调谐装置的原理与实验研究. 物理学报, 2004, 53(12): 4253-4256. doi: 10.7498/aps.53.4253
    [19] 乔启全, 陈 柏, 范 微, 陈嘉琳, 李学春, 林尊琪. 1053nm附近掺镱光纤超荧光光源的研究. 物理学报, 2003, 52(6): 1422-1426. doi: 10.7498/aps.52.1422
    [20] 初桂荫, 朱化南, 张治国, 傅盘铭, 叶佩弦. 掺染料向列相液晶的简并四波混频研究. 物理学报, 1985, 34(3): 421-425. doi: 10.7498/aps.34.421
计量
  • 文章访问数:  4368
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-04
  • 修回日期:  2017-04-07
  • 刊出日期:  2017-08-05

/

返回文章
返回