搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

源于非晶合金的透明磁性半导体

陈娜 张盈祺 姚可夫

引用本文:
Citation:

源于非晶合金的透明磁性半导体

陈娜, 张盈祺, 姚可夫

Transparent magnetic semiconductors from ferromagnetic amorphous alloys

Chen Na, Zhang Ying-Qi, Yao Ke-Fu
PDF
导出引用
  • 磁性半导体兼具磁性和半导体特性,通过操控电子自旋,有望实现接近完全的电子极化,提供一种全新的导电方式和器件概念.目前磁性半导体的研究对象主要为稀磁半导体,采用在非磁性半导体中添加过渡族磁性元素使半导体获得内禀磁性的方法进行制备.但大部分稀磁半导体仅具有低温磁性,成为限制其在室温可操控电子器件中应用的瓶颈.针对这一关键科学问题,本文提出与传统稀磁半导体制备方法相反的合成思路,在磁性非晶合金中引入非金属元素诱发金属-半导体转变,使磁性非晶获得半导体电性,研制出具有新奇磁、光、电耦合特性的非晶态浓磁半导体,揭示其载流子调制磁性的内禀机理,发展出可在室温下工作的p-n结及电控磁器件.
    Magnetic semiconductors hold a very special position in the field of spintronics because they allow the effective manipulations of both charge and spin. This feature is important for devices combining logic functionalities and information storage capabilities. The existing technology to obtain diluted magnetic semiconductors (DMSs) is to dope magnetic elements into traditional semiconductors. So far, the DMSs have attracted much attention, yet it remains a challenge to increasing their Curie temperatures above room temperature, particularly for those III-V-based DMSs. In contrast to the concept of doping magnetic elements into conventional semiconductors to make DMSs, here we propose to introduce non-magnetic elements into originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. To demonstrate this concept, we introduce oxygen into a ferromagnetic amorphous alloy to form semiconducting thin films. All the thin films are deposited on different substrates like Si, SiO2 and quartz glass by magnetron sputtering. The structures of the deposited thin films are characterized by a JEOL transmission electron microscope operated at 200 kV. The optical transparencies of the samples are measured using Jasco V-650 UV-vis spectrophotometer. The photoluminescence spectra of the samples are measured using RM1000 Raman microscope. Electrical properties of the samples are measured using Physical Property Measurement System (PPMS-9, Quantum Design). Magnetic properties, i.e., magnetic moment-temperature relations, are measured using SQUID-VSM (Quantum Design). With oxygen addition increasing, the amorphous alloy gradually becomes transparent. Accompanied by the opening of bandgap, its electric conduction changes from metal-type to semiconductor-type, indicating that the inclusion of oxygen indeed mediates a metal-semiconductor transition. For different oxygen content, the resistivities of these thin films are changed by about four orders of magnitude. Notably, all of them are ferromagnetic. All the samples show anomalous Hall effect. Furthermore, their magnetoresistance changes from a very small positive value of about 0.09% to a negative value of about -6.3% under an external magnetic field of 6 T. Correspondingly, the amorphous structure of the thin film evolves from a single-phase amorphous alloy to a single-phase amorphous metal oxide. Eventually a p-type CoFeTaBO magnetic semiconductor is developed, and has a Curie temperature above 600 K. The carrier density of this material is ~1020 cm-3. The CoFeTaBO magnetic semiconductor has a direct bandgap of about 2.4 eV. The room-temperature photoluminescence spectra further verify that its optical bandgap is ~2.5 eV. The demonstrations of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflect its p-type semiconducting character and the intrinsic ferromagnetism modulated by its carrier concentration. Our findings may pave a new way to realizing high Curie temperature magnetic semiconductors with unusual multi-functionalities.
      通信作者: 陈娜, chennadm@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51471091)资助的课题.
      Corresponding author: Chen Na, chennadm@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51471091).
    [1]

    Waldrop M M 2016 Nature 530 144

    [2]

    Ohno H 1998 Science 281 951

    [3]

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]

    [4]

    Kuang L A, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡龙安, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为 2005 物理学报 54 2934]

    [5]

    What don't we know? (special section) 2005 Science 309 82

    [6]

    Kasuya T, Yanase A 1968 Rev. Mod. Phys. 40 684

    [7]

    Munekata H, Ohno H, Molnar S, Segmller A, Chang A A, Esaki L 1989 Phys. Rev. Lett. 63 1849

    [8]

    Ohno Y, Yong D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [9]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [10]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [11]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [12]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [13]

    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 584

    [14]

    Interview with Chambers S 2010 Nat. Mater. 9 956

    [15]

    Coey J M D, Chambers S A 2008 MRS Bull. 33 1053

    [16]

    Editorial 2010 Nat. Mater. 9 951

    [17]

    Samarth N 2010 Nat. Mater. 9 955

    [18]

    Zhou S Q, Li L, Yuan Y, Rushforth A W, Chen L, Wang Y T, Bottger R, Heller R, Zhao J H, Edmonds K W, Campion R P, Gallagher B L, Timm C, Helm M 2016 Phys. Rev. B 94 075205

    [19]

    Xu D Q, Li P X, Lou Y L, Yue G L, Zhang C, Zhang Y, Liu N Z, Yang B 2016 Acta Phys. Sin. 65 197501 (in Chinese) [徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波 2016 物理学报 65 197501]

    [20]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

    [21]

    Jungwirth T, Wunderlich J, Nová V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J, Němec P 2014 Rev. Mod. Phys. 86 855

    [22]

    Zhao Q, Xiong Z H, Luo L, Sun Z H, Qin Z Z, Chen L L, Wu N 2017 Appl. Surf. Sci. 396 480

    [23]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel AA, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 442

    [24]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412

    [25]

    Zhao K, Zeng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F L, Uemura Y J, Dabkowsk H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, Jin C Q 2013 Nat. Commun. 4 1442

    [26]

    Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401

    [27]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [28]

    Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694

    [29]

    Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nnotech. 11 352

    [30]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, Molnar S 2011 Nano Lett. 11 2584

    [31]

    Paluskar P V, Lavrijsen R, Sicot M, Kohlhepp J T, Swagten H J M, Koopmans B 2009 Phys. Rev. Lett. 102 016602

    [32]

    Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (Ch. 8) (Burlington: Elsevier Buterworth-Heinmann) Table 8.8e

    [33]

    Chen G H, Deng J X, Cui M, Song X M 2012 Novel Thin Film Materials for Electronics (Beijing: Chemical Industry Press) p28 (in Chinese) [陈光华, 邓金祥, 崔敏, 宋雪梅 2012 新型电子薄膜材料(北京: 化学工业出版社)第28页]

    [34]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [35]

    Kim Y H, Heo J S, Kim T H, Park S, Yoon M H, Kim J, Oh M S, Yi G R, Noh Y Y, Park S K 2012 Nature 489 128

    [36]

    Manyala N, DiTusa J F, Aeppli G, Young D P, Fisk Z 2000 Nature 404 581

    [37]

    Pellegren J P, Sokalski V M 2015 IEEE Trans. Magn. 51 3400903

    [38]

    Liu W J, Zhang H X, Shi J, Wang Z C, Song C, Wang X R, Lu S Y, Zhou X J, Gu L, Louzguine-Luzgin D M, Chen M W, Yao K F, Chen N 2016 Nat. Commun. 7 13497

    [39]

    Hildebrandt E, Kurian J, Mller M M, Schroeder T, Kleebe H J, Alff L 2011 Appl. Phys. Lett. 99 112902

    [40]

    Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T, Hosono H 2003 Adv. Mater. 15 1409

  • [1]

    Waldrop M M 2016 Nature 530 144

    [2]

    Ohno H 1998 Science 281 951

    [3]

    Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]

    [4]

    Kuang L A, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡龙安, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为 2005 物理学报 54 2934]

    [5]

    What don't we know? (special section) 2005 Science 309 82

    [6]

    Kasuya T, Yanase A 1968 Rev. Mod. Phys. 40 684

    [7]

    Munekata H, Ohno H, Molnar S, Segmller A, Chang A A, Esaki L 1989 Phys. Rev. Lett. 63 1849

    [8]

    Ohno Y, Yong D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [9]

    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944

    [10]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [11]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [12]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [13]

    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 584

    [14]

    Interview with Chambers S 2010 Nat. Mater. 9 956

    [15]

    Coey J M D, Chambers S A 2008 MRS Bull. 33 1053

    [16]

    Editorial 2010 Nat. Mater. 9 951

    [17]

    Samarth N 2010 Nat. Mater. 9 955

    [18]

    Zhou S Q, Li L, Yuan Y, Rushforth A W, Chen L, Wang Y T, Bottger R, Heller R, Zhao J H, Edmonds K W, Campion R P, Gallagher B L, Timm C, Helm M 2016 Phys. Rev. B 94 075205

    [19]

    Xu D Q, Li P X, Lou Y L, Yue G L, Zhang C, Zhang Y, Liu N Z, Yang B 2016 Acta Phys. Sin. 65 197501 (in Chinese) [徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波 2016 物理学报 65 197501]

    [20]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

    [21]

    Jungwirth T, Wunderlich J, Nová V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J, Němec P 2014 Rev. Mod. Phys. 86 855

    [22]

    Zhao Q, Xiong Z H, Luo L, Sun Z H, Qin Z Z, Chen L L, Wu N 2017 Appl. Surf. Sci. 396 480

    [23]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel AA, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 442

    [24]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412

    [25]

    Zhao K, Zeng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F L, Uemura Y J, Dabkowsk H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, Jin C Q 2013 Nat. Commun. 4 1442

    [26]

    Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401

    [27]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [28]

    Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694

    [29]

    Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nnotech. 11 352

    [30]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, Molnar S 2011 Nano Lett. 11 2584

    [31]

    Paluskar P V, Lavrijsen R, Sicot M, Kohlhepp J T, Swagten H J M, Koopmans B 2009 Phys. Rev. Lett. 102 016602

    [32]

    Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (Ch. 8) (Burlington: Elsevier Buterworth-Heinmann) Table 8.8e

    [33]

    Chen G H, Deng J X, Cui M, Song X M 2012 Novel Thin Film Materials for Electronics (Beijing: Chemical Industry Press) p28 (in Chinese) [陈光华, 邓金祥, 崔敏, 宋雪梅 2012 新型电子薄膜材料(北京: 化学工业出版社)第28页]

    [34]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [35]

    Kim Y H, Heo J S, Kim T H, Park S, Yoon M H, Kim J, Oh M S, Yi G R, Noh Y Y, Park S K 2012 Nature 489 128

    [36]

    Manyala N, DiTusa J F, Aeppli G, Young D P, Fisk Z 2000 Nature 404 581

    [37]

    Pellegren J P, Sokalski V M 2015 IEEE Trans. Magn. 51 3400903

    [38]

    Liu W J, Zhang H X, Shi J, Wang Z C, Song C, Wang X R, Lu S Y, Zhou X J, Gu L, Louzguine-Luzgin D M, Chen M W, Yao K F, Chen N 2016 Nat. Commun. 7 13497

    [39]

    Hildebrandt E, Kurian J, Mller M M, Schroeder T, Kleebe H J, Alff L 2011 Appl. Phys. Lett. 99 112902

    [40]

    Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T, Hosono H 2003 Adv. Mater. 15 1409

  • [1] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232040
    [2] 谢玲凤, 董金瓯, 赵雪芹, 杨巧林, 宁凡龙. In掺杂对磁性半导体Li1.05(Zn0.925,Mn0.075) As中铁磁序的调控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231949
    [3] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [4] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [5] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [6] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景. 物理学报, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [7] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [8] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [9] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [11] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [12] 朱亮清, 林铁, 郭少令, 褚君浩. 非简并p型Hg1-xMnxTe单晶(x0.17)的负磁电阻机理研究. 物理学报, 2012, 61(8): 087501. doi: 10.7498/aps.61.087501
    [13] 王锋, 潘荣萱, 林海容. 非晶FexZn1-xO薄膜的结构、磁性和电性能. 物理学报, 2012, 61(24): 247501. doi: 10.7498/aps.61.247501
    [14] 邹文琴, 路忠林, 王申, 刘圆, 陆路, 郦莉, 张凤鸣, 都有为. Mn和N共掺ZnO稀磁半导体薄膜的研究. 物理学报, 2009, 58(8): 5763-5767. doi: 10.7498/aps.58.5763
    [15] 宋红强, 王 勇, 颜世申, 梅良模, 张 泽. 退火对高Co含量Ti1-xCoxO2磁性半导体的影响. 物理学报, 2008, 57(7): 4534-4538. doi: 10.7498/aps.57.4534
    [16] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运. 物理学报, 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [17] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究. 物理学报, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [19] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [20] 周剑平, 陈诺夫, 宋书林, 柴春林, 杨少延, 刘志凯, 林兰英. Si被注入Gd后的磁性及其整流特性的研究. 物理学报, 2003, 52(6): 1469-1473. doi: 10.7498/aps.52.1469
计量
  • 文章访问数:  5980
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-06-20
  • 刊出日期:  2017-09-05

/

返回文章
返回