搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶物质中的临界现象

任景莉 于利萍 张李盈

引用本文:
Citation:

非晶物质中的临界现象

任景莉, 于利萍, 张李盈

Critical phenomena in amorphous materials

Ren Jing-Li, Yu Li-Ping, Zhang Li-Ying
PDF
导出引用
  • 非晶态材料有着复杂的原子结构(短程有序、长程无序)和特殊的物理性质,其临界现象和相变问题一直受到学术界关注.非晶合金,又称为金属玻璃,是一种新型的非晶态材料,具有很高的强度和优异的弹性.从微观的角度来看,非晶合金可以看作是一个多粒子系统.临界现象的研究对认识和理解多粒子系统之间的相互作用有深刻的意义.本文主要讨论非晶合金中的临界现象,包括非晶合金从制备过程、微观结构到宏观的力学性能以及磁性方面存在的临界现象,并分析这些临界现象之间的内在联系,进而深入理解非晶合金的微观结构对其宏观性质的影响.这为认识非晶合金的形成本质,提高服役可靠性,探索具有实际应用价值的非晶合金提供理论依据.
    Amorphous material usually exhibit a complex atomic structure including short-range order, long-range disorder and metastable state in thermodynamic, which is one of the existing states of matters. Amorphous alloy, also named metallic glass, is a new metallic material, and has a high strength, a good electromagnetic property, an excellent corrosionresistant and a high elasticity. The system of amorphous alloy can show some critical states and is a complicated system. In recent years, much atttentions have been paid to the researches of the phase transitions and critical phenomena of amorphous material. On a microscale, amorphous alloy can be regarded as a solid composed of many-particle systems. The investigation of the critical phenomena can significantly enhance the understanding of the interactions among these multi-particle systems. The structure of amorphous alloy is randomly and isotropic in macro performance, and ordered and anisotropic on a localized nanometer scale. The characteristics on different scales of amorphous alloy are not isolated. The structure of amorphous alloy determines the performance. The preparation process determines the nature of the microstructure. The microstructure is the internal cause dominating glass transition and deformation. Moreover, the effective cooling rate in preparation process of amorphous alloy affects the short-range rate of the amorphous phase. The nonperiodic short-range order plays a key role in the stability of amorphous phase. Furthermore, the glass transition and deformation of amorphous alloys are the responses to the external energy. The characteristics of the deformation process change with external condition. The external force can lead to the localized shear deformation and transformation between amorphous and liquid in the shear band. High temperature can cause a wide range of transformation from the amorphous solid to the liquid. So it is worth understanding in depth the basic principles of liquid and glass transition in order to prepare amorphous alloy in undercooled liquids. In this review article, we discuss the critical phenomena of amorphous alloys, which include the preparation process, the microstructure, the mechanical property and the electromagnetism. The correlation and the influence of microstructure on the macroscopic properties are analyzed. It will be helpful for understanding the nature of amorphous alloy, improving service reliability and exploring amorphous alloys with application values.
      通信作者: 任景莉, renjl@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11271339)、河南省创新人才计划(批准号:164200510011)、河南省科技创新研究团队(批准号:17IRTSTHN007)、非线性力学国家重点实验室开放基金(批准号:LNM201710)和国家重点研发计划重点专项(批准号:2017YFB0702500)资助的课题.
      Corresponding author: Ren Jing-Li, renjl@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11271339), the Plan for Scientific Innovation Talent of Henan Province, China (Grant No. 164200510011), the Innovative Research Team of Science and Technology in Henan Province, China (Grant No. 17IRTSTHN007), the Opening Fund of State Key Laboratory of Nonlinear Mechanics, China (Grant No. LNM201710), and the National Key Research and Development Program of China (Grant No. 2017YFB0702500).
    [1]

    Wang W H 2013 Acta Phys. Sin. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [2]

    Yang W M, Liu H S, Zhao Y C, Inoue A, Jiang K M, Huo J T, Ling H B, Li Q, Shen B L 2014 Sci. Rep. 4 6233

    [3]

    Yu L, Hao B L 1984 Introduction to Phase Transitions and Critical Phenomena (Beijing: Science Press) p2 (in Chinese) [于渌, 郝柏林 1984 相变和临界现象 (北京: 科学出版社) 第 2 页]

    [4]

    Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

    [5]

    Chen H S, Turnbull D 1969 Acta Metall. 17 1021

    [6]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [7]

    Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005

    [8]

    Löffler J F 2003 Intermetallics 11 529

    [9]

    Shi Y, Falk M L 2006 Scripta Mater. 54 381

    [10]

    Turnbull D 1969 Contemp. Phys. 10 473

    [11]

    Zhang Y 2010 Metallic Glasses and High-Entropy Alloys (Beijing: Science Press) p14 (in Chinese) [张勇 2010 非晶和高熵合金 (北京: 科学出版社) 第 14 页]

    [12]

    Uhlmann D R 1972 J. Non-Cryst. Solids 7 337

    [13]

    Onorato P I K, Uhlmann D R 1976 J. Non-Cryst. Solids 22 367

    [14]

    Zheng Z B 1979 Acta Metall. Sin. 1 160 (in Chinese) [郑兆勃 1979 金属学报 1 160]

    [15]

    Torquato S 2000 Nature 405 521

    [16]

    Dai D S, Han R Q 1988 Amorphous Physics (Beijing: Publishing House of Electronics Industry) p672 (in Chinese) [戴道生, 韩汝琪 1988 非晶态物理学 (北京: 电子工业出版社) 第 672 页]

    [17]

    Hui X D, Chen G L 2007 Bulk Mmetallic Glasses (Beijing: Chemical Industry Press) p50 (in Chinese) [惠希东, 陈国良 2007 块体非晶合金 (北京: 化学工业出版社) 第 50 页]

    [18]

    Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606

    [19]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28

    [20]

    Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L 2006 Phys. Rev. Lett. 97 065502

    [21]

    Biroli G 2007 Nat. Phys. 3 222

    [22]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [23]

    Liu A J, Nagel S R 1998 Nature 396 21

    [24]

    Wang W H 2011 J. Appl. Phys. 110 053521

    [25]

    Wang W H 2012 Nat. Mater. 11 275

    [26]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201

    [27]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Condens. Matter 23 142202

    [28]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429

    [29]

    Zhu Z G, Li Y Z, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K L, Wang W H 2014 J. Chem. Phys. 141 084506

    [30]

    Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T, Wang W H 2016 Acta Mater. 110 73

    [31]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [32]

    Kchemann S, Maaß R 2017 Scripta Mater. 137 5

    [33]

    Wang W H 2006 J Appl. Phys. 99 093506

    [34]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [35]

    Yang B, Liu C T, Nieh T G 2006 Appl. Phys. Lett. 88 221911

    [36]

    He D R, Liu Z H, Wang B H 2009 Complex Systems and Complex Networks (Beijing: Higher Education Press) pp126-145 (in Chinese) [何大韧, 刘宗华, 汪秉宏 2009 复杂系统与复杂网络 (北京: 高等教育出版社) 第 126-145 页]

    [37]

    Park K W, Lee C M, Kim H J, Lee J H, Lee J C 2009 Mater. Sci. Eng. A 499 529

    [38]

    Miracle D B 2004 Nat. Mater. 3 3697

    [39]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [40]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [41]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Greer J R 2015 Science 349 1306

    [42]

    Cheng Y Q, Ma E 2011 Prog. Mater Sci. 56 379

    [43]

    Akihiko H, Pengfei G, Takeshi F, Yoshihiko H, Akihisa I, Alain Reza Y 2011 Nat. Mater. 10 28

    [44]

    Treacy M M J, Borisenko K B 2012 Science 335 950

    [45]

    Zeng Q S, Sheng H W, Ding Y, Wang, L, Yang, W G, Jiang J Z, Mao W L, Mao, H K 2011 Science 332 1404

    [46]

    Bernal J D 1960 Nature 185 68

    [47]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502

    [48]

    Srivastava A P, Das N, Sharma S K, Sinha A K, Srivastava D, Pujari P K, Dey G K 2016 J. Phys. D: Appl. Phys. 49 225303

    [49]

    Bunde A, Havlin S 1991 Fractals and Disordered Systems (New York: Springer-Verlag) pp132-145

    [50]

    Scher H, Zallen R 1970 J. Chem. Phys. 53 3759

    [51]

    Ren J L, Zhang L Y, Siegmund S 2016 Sci. Rep. 6 22420

    [52]

    Ren J L, Zhang L Y 2017 J. Stat. Phys. 168 394

    [53]

    Spaepen F 1977 Acta Metall. 25 407

    [54]

    Argon A S 1979 Acta Metall. 27 47

    [55]

    Cohen M H, Grest G S 1979 Phys. Rev. B 20 1077

    [56]

    Schuh C A, Hufnag T C, Ramamurty U 2007 Acta Mater. 55 4067

    [57]

    Ngai K L 2011 Relaxation and Difusion in Complex Systems (New York: Springer-Verlag) pp154-168

    [58]

    Leamy H J, Wang T T, Chen H S 1972 Metall. Mater. Trans. B 3 699

    [59]

    Ott E 1993 Chaos in Dynamical Systems (Cambridge: Cambridge University Press) p71

    [60]

    Kauffman S A 1992 Origins of Order in Evolution: Self-organization and Selection (Berlin: Springer-Verlag) pp153-181

    [61]

    Bak P, Tang C, Wiesenfeld K 1988 Phys. Rev. A 38 364

    [62]

    Karatzas I, Shreve S E 1991 Brownian Motion and Stochastic Calculus (Berlin: Springer-Verlag) p132

    [63]

    Pentland A P 1984 IEEE Trans. Pattern Anal. 6 661

    [64]

    Lopes R, Betrouni N 2009 Med. Image Anal. 13 634

    [65]

    Sarmah R, Ananthakrishna G, Sun B A, Wang W H 2011 Acta Mater. 59 4482

    [66]

    Hu H B, Wang L 2005 Physics 34 889 (in Chinese) [胡海波, 王林 2005 物理 34 889]

    [67]

    Sammonds P 2005 Nat. Mater. 4 425

    [68]

    Christensen K, Moloney N R 2005 Complexity and Criticality (London: Imperial College Press) pp15-22

    [69]

    Bak P, Tang C 1989 J. Geophys. Res. 94 15635

    [70]

    Mandelbrot B B, Wheeler J A 1983 Am. J. Phys. 51 286

    [71]

    Sun B A, Yu H B, Jiao W, Bai H Y, Zhao D Q, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [72]

    Sun B A, Pauly S, Tan J, Stoica M, Wang W H, Khn U, Eckert J 2012 Acta Mater. 60 4160

    [73]

    Wang G, Chan K C, Xia L, Yu P, Shen J, Wang W H 2009 Acta Mater. 57 6146

    [74]

    Ren J L, Chen C, Wang G, Mattern N, Eckert J 2011 AIP Adv. 1 032158

    [75]

    Ren J L, Chen C, Liu Z Y, Li R, Wang G 2012 Phys. Rev. B 86 134303

    [76]

    Chen C, Ren J L, Wang G, Dahmen K A, Liaw P K 2015 Phys. Rev. E 92 012113

    [77]

    Ren J L, Chen C, Wang G, Liaw P K 2017 Sci. Rep. 7 45083

    [78]

    Burridge R, Knopoff L 1967 Bull. Seismol. Soc. Am. 57 341

    [79]

    Ren J L, Chen C, Wang G, Cheung W S, Sun B A, Mattern N 2014 J. Appl. Phys. 116 033520

    [80]

    Gubanov A I 1960 Sov. Phys. Solid State 2 468

    [81]

    Shen B G, Zhao J G, Zhan W S, Chen J C 1986 Acta Phys. Sin. 35 124 (in Chinese) [沈保根, 赵见高, 詹文山, 陈金昌 1986 物理学报 35 124]

    [82]

    Le Guillon J C, Zinn-Justin J 1977 Phys. Rev. Lett. 39 95

    [83]

    Fisher M E 1974 Rev. Mod. Phys. 46 597

    [84]

    Kollvel J S, Comly J B 1968 Phys. Rev. Lett. 20 1237

    [85]

    Collins M F, Minkiewicz V J, Nathans R, Passell L, Shirane G 1969 Phys. Rev. 179 417

    [86]

    Kaul S N 1981 Phys. Rev. B 24 6550

    [87]

    Kaul S N 1981 Phys. Rev. B 23 1205

    [88]

    Malmhäll R, Bäckström G, Rao K V, Bhagat S M, Meichale M, Salamon M B 1978 J. Appl. Phys. 49 1727

    [89]

    Beckman D, Gramm K, Lundgren L, Rao K V, Chen H S 1981 Solid State Commun. 39 777

    [90]

    Winschun K, Rosenberg M 1987 J. Appl. Phys. 61 4401

    [91]

    Yeshurun Y, Salamon M B, Rao K V, Chen H S 1981 Phys. Rev. B 24 1536

    [92]

    Arrott A 1957 Phys. Rev. 108 1394

    [93]

    Yeung I, Roshko R, Williams G 1986 Phys. Rev. B 34 3456

    [94]

    Aharony A, Pytte E 1983 Phys. Rev. B 27 5872

  • [1]

    Wang W H 2013 Acta Phys. Sin. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [2]

    Yang W M, Liu H S, Zhao Y C, Inoue A, Jiang K M, Huo J T, Ling H B, Li Q, Shen B L 2014 Sci. Rep. 4 6233

    [3]

    Yu L, Hao B L 1984 Introduction to Phase Transitions and Critical Phenomena (Beijing: Science Press) p2 (in Chinese) [于渌, 郝柏林 1984 相变和临界现象 (北京: 科学出版社) 第 2 页]

    [4]

    Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

    [5]

    Chen H S, Turnbull D 1969 Acta Metall. 17 1021

    [6]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [7]

    Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005

    [8]

    Löffler J F 2003 Intermetallics 11 529

    [9]

    Shi Y, Falk M L 2006 Scripta Mater. 54 381

    [10]

    Turnbull D 1969 Contemp. Phys. 10 473

    [11]

    Zhang Y 2010 Metallic Glasses and High-Entropy Alloys (Beijing: Science Press) p14 (in Chinese) [张勇 2010 非晶和高熵合金 (北京: 科学出版社) 第 14 页]

    [12]

    Uhlmann D R 1972 J. Non-Cryst. Solids 7 337

    [13]

    Onorato P I K, Uhlmann D R 1976 J. Non-Cryst. Solids 22 367

    [14]

    Zheng Z B 1979 Acta Metall. Sin. 1 160 (in Chinese) [郑兆勃 1979 金属学报 1 160]

    [15]

    Torquato S 2000 Nature 405 521

    [16]

    Dai D S, Han R Q 1988 Amorphous Physics (Beijing: Publishing House of Electronics Industry) p672 (in Chinese) [戴道生, 韩汝琪 1988 非晶态物理学 (北京: 电子工业出版社) 第 672 页]

    [17]

    Hui X D, Chen G L 2007 Bulk Mmetallic Glasses (Beijing: Chemical Industry Press) p50 (in Chinese) [惠希东, 陈国良 2007 块体非晶合金 (北京: 化学工业出版社) 第 50 页]

    [18]

    Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606

    [19]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28

    [20]

    Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L 2006 Phys. Rev. Lett. 97 065502

    [21]

    Biroli G 2007 Nat. Phys. 3 222

    [22]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [23]

    Liu A J, Nagel S R 1998 Nature 396 21

    [24]

    Wang W H 2011 J. Appl. Phys. 110 053521

    [25]

    Wang W H 2012 Nat. Mater. 11 275

    [26]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201

    [27]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Condens. Matter 23 142202

    [28]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429

    [29]

    Zhu Z G, Li Y Z, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K L, Wang W H 2014 J. Chem. Phys. 141 084506

    [30]

    Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T, Wang W H 2016 Acta Mater. 110 73

    [31]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [32]

    Kchemann S, Maaß R 2017 Scripta Mater. 137 5

    [33]

    Wang W H 2006 J Appl. Phys. 99 093506

    [34]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [35]

    Yang B, Liu C T, Nieh T G 2006 Appl. Phys. Lett. 88 221911

    [36]

    He D R, Liu Z H, Wang B H 2009 Complex Systems and Complex Networks (Beijing: Higher Education Press) pp126-145 (in Chinese) [何大韧, 刘宗华, 汪秉宏 2009 复杂系统与复杂网络 (北京: 高等教育出版社) 第 126-145 页]

    [37]

    Park K W, Lee C M, Kim H J, Lee J H, Lee J C 2009 Mater. Sci. Eng. A 499 529

    [38]

    Miracle D B 2004 Nat. Mater. 3 3697

    [39]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [40]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [41]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Greer J R 2015 Science 349 1306

    [42]

    Cheng Y Q, Ma E 2011 Prog. Mater Sci. 56 379

    [43]

    Akihiko H, Pengfei G, Takeshi F, Yoshihiko H, Akihisa I, Alain Reza Y 2011 Nat. Mater. 10 28

    [44]

    Treacy M M J, Borisenko K B 2012 Science 335 950

    [45]

    Zeng Q S, Sheng H W, Ding Y, Wang, L, Yang, W G, Jiang J Z, Mao W L, Mao, H K 2011 Science 332 1404

    [46]

    Bernal J D 1960 Nature 185 68

    [47]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502

    [48]

    Srivastava A P, Das N, Sharma S K, Sinha A K, Srivastava D, Pujari P K, Dey G K 2016 J. Phys. D: Appl. Phys. 49 225303

    [49]

    Bunde A, Havlin S 1991 Fractals and Disordered Systems (New York: Springer-Verlag) pp132-145

    [50]

    Scher H, Zallen R 1970 J. Chem. Phys. 53 3759

    [51]

    Ren J L, Zhang L Y, Siegmund S 2016 Sci. Rep. 6 22420

    [52]

    Ren J L, Zhang L Y 2017 J. Stat. Phys. 168 394

    [53]

    Spaepen F 1977 Acta Metall. 25 407

    [54]

    Argon A S 1979 Acta Metall. 27 47

    [55]

    Cohen M H, Grest G S 1979 Phys. Rev. B 20 1077

    [56]

    Schuh C A, Hufnag T C, Ramamurty U 2007 Acta Mater. 55 4067

    [57]

    Ngai K L 2011 Relaxation and Difusion in Complex Systems (New York: Springer-Verlag) pp154-168

    [58]

    Leamy H J, Wang T T, Chen H S 1972 Metall. Mater. Trans. B 3 699

    [59]

    Ott E 1993 Chaos in Dynamical Systems (Cambridge: Cambridge University Press) p71

    [60]

    Kauffman S A 1992 Origins of Order in Evolution: Self-organization and Selection (Berlin: Springer-Verlag) pp153-181

    [61]

    Bak P, Tang C, Wiesenfeld K 1988 Phys. Rev. A 38 364

    [62]

    Karatzas I, Shreve S E 1991 Brownian Motion and Stochastic Calculus (Berlin: Springer-Verlag) p132

    [63]

    Pentland A P 1984 IEEE Trans. Pattern Anal. 6 661

    [64]

    Lopes R, Betrouni N 2009 Med. Image Anal. 13 634

    [65]

    Sarmah R, Ananthakrishna G, Sun B A, Wang W H 2011 Acta Mater. 59 4482

    [66]

    Hu H B, Wang L 2005 Physics 34 889 (in Chinese) [胡海波, 王林 2005 物理 34 889]

    [67]

    Sammonds P 2005 Nat. Mater. 4 425

    [68]

    Christensen K, Moloney N R 2005 Complexity and Criticality (London: Imperial College Press) pp15-22

    [69]

    Bak P, Tang C 1989 J. Geophys. Res. 94 15635

    [70]

    Mandelbrot B B, Wheeler J A 1983 Am. J. Phys. 51 286

    [71]

    Sun B A, Yu H B, Jiao W, Bai H Y, Zhao D Q, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [72]

    Sun B A, Pauly S, Tan J, Stoica M, Wang W H, Khn U, Eckert J 2012 Acta Mater. 60 4160

    [73]

    Wang G, Chan K C, Xia L, Yu P, Shen J, Wang W H 2009 Acta Mater. 57 6146

    [74]

    Ren J L, Chen C, Wang G, Mattern N, Eckert J 2011 AIP Adv. 1 032158

    [75]

    Ren J L, Chen C, Liu Z Y, Li R, Wang G 2012 Phys. Rev. B 86 134303

    [76]

    Chen C, Ren J L, Wang G, Dahmen K A, Liaw P K 2015 Phys. Rev. E 92 012113

    [77]

    Ren J L, Chen C, Wang G, Liaw P K 2017 Sci. Rep. 7 45083

    [78]

    Burridge R, Knopoff L 1967 Bull. Seismol. Soc. Am. 57 341

    [79]

    Ren J L, Chen C, Wang G, Cheung W S, Sun B A, Mattern N 2014 J. Appl. Phys. 116 033520

    [80]

    Gubanov A I 1960 Sov. Phys. Solid State 2 468

    [81]

    Shen B G, Zhao J G, Zhan W S, Chen J C 1986 Acta Phys. Sin. 35 124 (in Chinese) [沈保根, 赵见高, 詹文山, 陈金昌 1986 物理学报 35 124]

    [82]

    Le Guillon J C, Zinn-Justin J 1977 Phys. Rev. Lett. 39 95

    [83]

    Fisher M E 1974 Rev. Mod. Phys. 46 597

    [84]

    Kollvel J S, Comly J B 1968 Phys. Rev. Lett. 20 1237

    [85]

    Collins M F, Minkiewicz V J, Nathans R, Passell L, Shirane G 1969 Phys. Rev. 179 417

    [86]

    Kaul S N 1981 Phys. Rev. B 24 6550

    [87]

    Kaul S N 1981 Phys. Rev. B 23 1205

    [88]

    Malmhäll R, Bäckström G, Rao K V, Bhagat S M, Meichale M, Salamon M B 1978 J. Appl. Phys. 49 1727

    [89]

    Beckman D, Gramm K, Lundgren L, Rao K V, Chen H S 1981 Solid State Commun. 39 777

    [90]

    Winschun K, Rosenberg M 1987 J. Appl. Phys. 61 4401

    [91]

    Yeshurun Y, Salamon M B, Rao K V, Chen H S 1981 Phys. Rev. B 24 1536

    [92]

    Arrott A 1957 Phys. Rev. 108 1394

    [93]

    Yeung I, Roshko R, Williams G 1986 Phys. Rev. B 34 3456

    [94]

    Aharony A, Pytte E 1983 Phys. Rev. B 27 5872

  • [1] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [3] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [4] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [6] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [7] 李任重, 武振伟, 徐莉梅. 液体-液体相变与反常特性. 物理学报, 2017, 66(17): 176410. doi: 10.7498/aps.66.176410
    [8] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [9] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [10] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [11] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [12] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [13] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [14] 孙光爱, 陈波, 吴二冬, 闫冠云, 黄朝强, 李武会, 吴忠华, 柳义, 王劼. 蠕变镍基单晶高温合金微观结构与界面特征的X射线小角散射研究. 物理学报, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [15] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [16] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [17] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [18] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [19] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [20] 王 漪, 韩汝琦, 刘晓彦, 崛口刚. 超薄膜磁性材料上XY模型的临界现象. 物理学报, 2003, 52(7): 1776-1782. doi: 10.7498/aps.52.1776
计量
  • 文章访问数:  5786
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-09-05

/

返回文章
返回