搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称照明在傅里叶叠层成像中的应用

张雷雷 唐立金 张慕阳 梁艳梅

引用本文:
Citation:

对称照明在傅里叶叠层成像中的应用

张雷雷, 唐立金, 张慕阳, 梁艳梅

Symmetric illumination in Fourier ptychography

Zhang Lei-Lei, Tang Li-Jin, Zhang Mu-Yang, Liang Yan-Mei
PDF
导出引用
  • 傅里叶叠层成像技术是一种全新的能够恢复出大视场下高分辨率图像的技术,而较长的采样时间限制了傅里叶叠层成像的实际应用.本文阐述了一种利用对称照明提高傅里叶叠层成像速度的方法,研究了傅里叶叠层成像在空域和频域上的对称性,指出在不考虑相位的情况下,利用对称照明可提高照明强度,减少傅里叶叠层成像所需要的图像数,同时可以提高傅里叶叠层成像图像重建的速度.实验表明使用对称照明可以在不改变算法复杂性的前提下,得到与传统傅里叶叠层成像同样的高分辨率,且所需的图像数减少约50%,采样时间减少约70%,图像重建时间减少约50%.基于对称照明的方法将促进傅里叶叠层成像技术在实时成像中的应用.
    Fourier ptychography (FP) is a newly developed imaging technology, which can reconstruct high-resolution (HR) wide-field image from a series of low-resolution (LR) images. The limitation of FP is its long acquisition and reconstruction time due to the numerous LR images that are needed and the low illumination intensity of light-emitting diodes (LEDs) which lead to long exposure time of imaging sensors. Many researches have been done to speed up FP. The available speeding-up methods with single LED illumination are still constrained by low illumination intensity of LED. Although multi-illumination methods can improve illumination intensity, they are time-consuming during spectrum decomposition. In this paper, we demonstrate a new efficient method, termed symmetric Fourier ptychography (SFP). For thin samples irrespective of phases, two center-symmetric illuminations generate the same intensity distribution, so that two center-symmetric LEDs used in FP can be lit up simultaneously and the illumination intensity is doubled. Spectra have central conjugate symmetry in Fourier domain so that only half of spectra need recovering, then, the processing time can be reduced by about 50%. Simulations are conducted with the Cameraman image as input amplitude. The LR images are generated based on the FP simulation process and then the LR images generated by LEDs from two center-symmetrical positions are summed. Furthermore, HR images are recovered by using FP reconstruction algorithms. It is found that root-mean-square-error of SFP is almost the same as that of traditional FP, which indicates that the SFP can achieve the same performance as that of traditional FP. Then, central conjugate symmetry is adopted in Fourier domain, where only half of spectra are recovered and the other half of spectra are obtained from conjugate symmetry. It proves that HR images can be recovered based on central conjugate symmetry in Fourier domain and 50% of processing time is saved. For imaging experiments of USAF target and biological samples, two LEDs of central symmetry are lit up simultaneously, and 113 LR images are gathered in contrast with 225 ones of traditional FP. It is also found that SFP can achieve the same resolution as that of the traditional FP. In the meantime, SFP can reduce about 50% LR images and save about 70% acquisition time without increasing the complexity of FP system and algorithms. In addition, SFP can be combined with other methods to further speed up the speed of FP, and its feasibility is proven by the experimental results of combination with adaptive Fourier ptychography. All results in this paper indicate that the proposed method has the potential to improve the application of FP in real-time imaging.
      通信作者: 梁艳梅, ymliang@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374167)和国家重点研发计划数字诊疗装备研发重点专项(批准号:2016YFC0101002)资助的课题.
      Corresponding author: Liang Yan-Mei, ymliang@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374167) and the State's Key Project of Research and Development Plan, China (Grant No. 2016YFC0101002).
    [1]

    Zheng G A, Horstmeyer R, Yang C H 2013 Nat. Photon. 7 739

    [2]

    Ou X Z, Horstmeyer R, Yang C H, Zheng G A 2013 Opt. Lett. 38 4845

    [3]

    Bian Z C, Dong S Y, Zheng G A 2013 Opt. Express 21 32400

    [4]

    Zheng G A 2014 IEEE Photon. J. 6 0701207

    [5]

    Dong S Y, Nanda P, Guo K K, Liao J, Zheng G A 2015 Photon. Res. 3 19

    [6]

    Ou X Z, Horstmeyer R, Zheng G A, Yang C H 2015 Opt. Express 23 3472

    [7]

    Xie Z L, Ma H T, Qi B, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2015 Chin. Phys. Lett. 32 124203

    [8]

    Xie Z L, Qi B, Ma H T, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2016 Chin. Phys. Lett. 33 44206

    [9]

    Sun J S, Chen Q, Zhang Y Z, Zuo C 2016 Biomed. Opt. Express 7 1336

    [10]

    Pacheco S, Zheng G A, Liang R G 2016 J. Biomed. Opt. 21 026010

    [11]

    Zheng G A 2016 Fourier Ptychographic Imaging: a MATLAB Tutorial (San Rafael: Morgan Claypool Publishers) pp(1-1)-(5-4)

    [12]

    Dong S Y, Horstmeyer R, Shiradkar R, Guo K K, Ou X Z, Bian Z C, Xin H L, Zheng G A 2014 Opt. Express 22 13586

    [13]

    Tian L, Waller L 2015 Optica 2 104

    [14]

    Dong S Y, Bian Z C, Shiradkar R, Zheng G A 2014 Opt. Express 22 5455

    [15]

    Bian L H, Suo J L, Situ G H, Zheng G A, Chen H, Dai Q H 2014 Opt. Lett. 39 6648

    [16]

    Zhang Y B, Jiang W X, Tian L, Waller L, Dai Q H 2015 Opt. Express 23 18471

    [17]

    Guo K K, Dong S Y, Nanda P, Zheng G A 2015 Opt. Express 23 6171

    [18]

    Dong S Y, Shiradkar R, Nanda P, Zheng G A 2014 Biomed. Opt. Express 5 1757

    [19]

    Tian L, Li X, Ramchandran K, Waller L 2014 Opt. Express 5 2376

    [20]

    Tian L, Liu Z J, Yeh L H, Chen M, Zhong J S, Waller L 2015 Optica 2 904

  • [1]

    Zheng G A, Horstmeyer R, Yang C H 2013 Nat. Photon. 7 739

    [2]

    Ou X Z, Horstmeyer R, Yang C H, Zheng G A 2013 Opt. Lett. 38 4845

    [3]

    Bian Z C, Dong S Y, Zheng G A 2013 Opt. Express 21 32400

    [4]

    Zheng G A 2014 IEEE Photon. J. 6 0701207

    [5]

    Dong S Y, Nanda P, Guo K K, Liao J, Zheng G A 2015 Photon. Res. 3 19

    [6]

    Ou X Z, Horstmeyer R, Zheng G A, Yang C H 2015 Opt. Express 23 3472

    [7]

    Xie Z L, Ma H T, Qi B, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2015 Chin. Phys. Lett. 32 124203

    [8]

    Xie Z L, Qi B, Ma H T, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2016 Chin. Phys. Lett. 33 44206

    [9]

    Sun J S, Chen Q, Zhang Y Z, Zuo C 2016 Biomed. Opt. Express 7 1336

    [10]

    Pacheco S, Zheng G A, Liang R G 2016 J. Biomed. Opt. 21 026010

    [11]

    Zheng G A 2016 Fourier Ptychographic Imaging: a MATLAB Tutorial (San Rafael: Morgan Claypool Publishers) pp(1-1)-(5-4)

    [12]

    Dong S Y, Horstmeyer R, Shiradkar R, Guo K K, Ou X Z, Bian Z C, Xin H L, Zheng G A 2014 Opt. Express 22 13586

    [13]

    Tian L, Waller L 2015 Optica 2 104

    [14]

    Dong S Y, Bian Z C, Shiradkar R, Zheng G A 2014 Opt. Express 22 5455

    [15]

    Bian L H, Suo J L, Situ G H, Zheng G A, Chen H, Dai Q H 2014 Opt. Lett. 39 6648

    [16]

    Zhang Y B, Jiang W X, Tian L, Waller L, Dai Q H 2015 Opt. Express 23 18471

    [17]

    Guo K K, Dong S Y, Nanda P, Zheng G A 2015 Opt. Express 23 6171

    [18]

    Dong S Y, Shiradkar R, Nanda P, Zheng G A 2014 Biomed. Opt. Express 5 1757

    [19]

    Tian L, Li X, Ramchandran K, Waller L 2014 Opt. Express 5 2376

    [20]

    Tian L, Liu Z J, Yeh L H, Chen M, Zhong J S, Waller L 2015 Optica 2 904

  • [1] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法. 物理学报, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [2] 陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋. 强散射过程与双随机相位加密过程的等价性分析. 物理学报, 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [3] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究. 物理学报, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [4] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [5] 乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法. 物理学报, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [6] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [7] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [8] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法. 物理学报, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [9] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法. 物理学报, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [10] 杜劲松, 高扬, 毕欣, 齐伟智, 黄林, 荣健. S波段微波热致超声成像系统研究. 物理学报, 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [11] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩. 基于稀疏优化的计算机断层成像图像不完全角度重建综述. 物理学报, 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [12] 王治昊, 王雅丽, 李拓, 史祎诗. 基于旋转相位编码与照明光束匹配的叠层衍射成像算法研究. 物理学报, 2014, 63(16): 164204. doi: 10.7498/aps.63.164204
    [13] 王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国. 可见光域叠层成像中照明光束的关键参量研究. 物理学报, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [14] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [15] 汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩. 一种圆轨迹锥束CT中截断投影数据的高效重建算法. 物理学报, 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [16] 王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞. 基于小型加速器的编码中子源成像研究. 物理学报, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究. 物理学报, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [19] 黄素娟, 王朔中, 于瀛洁. 共轭对称延拓傅里叶计算全息. 物理学报, 2009, 58(2): 952-958. doi: 10.7498/aps.58.952
    [20] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
计量
  • 文章访问数:  5672
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10
  • 修回日期:  2017-08-19
  • 刊出日期:  2017-11-05

/

返回文章
返回