搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子模拟钛中微孔洞的结构及其失效行为

何燕 周刚 刘艳侠 王皞 徐东生 杨锐

引用本文:
Citation:

原子模拟钛中微孔洞的结构及其失效行为

何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐

Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium

He Yan, Zhou Gang, Liu Yan-Xia, Wang Hao, Xu Dong-Sheng, Yang Rui
PDF
导出引用
  • 六角金属由于其各向异性等特点,在塑性变形等过程中容易产生形状和构型都相对复杂的点缺陷团簇.这些团簇之间及其与运动位错等缺陷的相互作用直接影响材料的物理和力学性能.然而对相关问题的原子尺度、尤其是空位团簇的演化和微孔洞的形成乃至裂纹形核扩展等的理解还不全面.本文采用激发弛豫算法结合第一原理及原子间作用势,系统考察了钛中的空位团簇构型及不同构型间的相互转变,给出了不同尺寸空位团簇的稳定和亚稳构型、空位团簇合并分解和迁移的激发能垒等关键参数,发现较小的空位团簇形成稳定构型,较大的空位团簇呈现出空间对称分布趋势进而形成微孔洞;采用高通量分子动力学模拟系统研究了不同尺寸的空位团簇在拉应力作用下对变形过程的影响,发现这些空位团簇可以形成层错,并对微裂纹的形核产生影响.
    During the plastic deformation of hexagonal metals, it is easy to generate the point defect clusters with complex shapes and configurations due to their anisotropic properties. The interactions among these clusters and between these clusters and moving dislocations significantly influence the physical and mechanical properties of hexagonal materials. However, none of these issues in particular concerning the evolutions of vacancy clusters, the formation of microvoids, and the crack nucleation and propagation, is comprehensively understood on an atomic scale. In the present work, we first employ the activation-relaxation technique, in combination with ab initio and interatomic potential calculations, to systematically investigate vacancy cluster configurations in titanium and the transformation between these clusters. The results indicate the stable and metastable configurations of vacancy clusters at various sizes and activation energies of their dissociation, combination and migration. It is found that the formation and migration energies decrease with the size of vacancy cluster increasing. Small vacancy clusters stabilize at configurations with special symmetry, while large clusters transform into microvoids or microcracks. High-throughput molecular dynamics simulations are subsequently employed to investigate the influences of these clusters on plastic deformation under tensile loading. The clusters are found to facilitate the crack nucleation by providing lower critical stress, which decreases with the size of the vacancy clusters increasing. Under tensile loading, cracks are first nucleated at small clusters and then grow up, while large clusters form microvoids and cracks directly grow up.
      通信作者: 王皞, haowang@imr.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFB0701304)、国家自然科学基金(批准号:51671195,11674233,61603265)和沈阳师范大学科技项目(批准号:L201521)资助的课题.
      Corresponding author: Wang Hao, haowang@imr.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2016YFB0701304), the National Natural Science Foundation of China (Grant Nos. 51671195, 11674233, 61603265), and the Technology Foundation of Shenyang Normal University, China (Grant No. L201521).
    [1]

    Bache M R 2003 Int. J. Fatigue 25 1079

    [2]

    Dunne F P E, Rugg D, Walker A 2007 Int. J. Plast. 23 1061

    [3]

    Sinha V, Mills M J, Williams J C 2004 Metall. Mater. Trans. A 35 3141

    [4]

    Pilchak A L, Williams R E A, Williams J C 2010 Metall. Mater. Trans. A 41 106

    [5]

    Veyssière P, Wang H, Xu D S, Chiu Y L 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012018

    [6]

    Xu D S, Wang H, Yang R, Veyssière P 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012024

    [7]

    Wang H, Xu D S, Yang R, Veyssière P 2008 Acta Mater. 56 4608

    [8]

    Wang H, Xu D S, Yang R, Veyssière P 2009 Acta Mater. 57 3725

    [9]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 1

    [10]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 10

    [11]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 19

    [12]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2011 Phys. Rev. B 84 220103

    [13]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2012 Philos. Mag. 93 186

    [14]

    Wang H, Xu D S, Veyssière P, Yang R 2013 Acta Mater. 61 3499

    [15]

    Wang H, Xu D S, Yang R 2014 Model. Simul. Mater. Sci. Eng. 22 085004

    [16]

    Sinha V, Mills M J, Williams J C 2006 Metall. Mater. Trans. A 37 2015

    [17]

    Sparkman D M, Millwater H R, Ghosh S 2013 Fatigue Fract. Eng. Mater. Struct. 36 994

    [18]

    Dunne F P E 2014 Curr. Opin. Solid State Mater. Sci. 18 170

    [19]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 024102

    [20]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [21]

    Nose S 1984 J. Chem. Phys. 81 511

    [22]

    Martínez E, Uberuaga B P 2015 Sci. Rep. 5 9084

  • [1]

    Bache M R 2003 Int. J. Fatigue 25 1079

    [2]

    Dunne F P E, Rugg D, Walker A 2007 Int. J. Plast. 23 1061

    [3]

    Sinha V, Mills M J, Williams J C 2004 Metall. Mater. Trans. A 35 3141

    [4]

    Pilchak A L, Williams R E A, Williams J C 2010 Metall. Mater. Trans. A 41 106

    [5]

    Veyssière P, Wang H, Xu D S, Chiu Y L 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012018

    [6]

    Xu D S, Wang H, Yang R, Veyssière P 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012024

    [7]

    Wang H, Xu D S, Yang R, Veyssière P 2008 Acta Mater. 56 4608

    [8]

    Wang H, Xu D S, Yang R, Veyssière P 2009 Acta Mater. 57 3725

    [9]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 1

    [10]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 10

    [11]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 19

    [12]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2011 Phys. Rev. B 84 220103

    [13]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2012 Philos. Mag. 93 186

    [14]

    Wang H, Xu D S, Veyssière P, Yang R 2013 Acta Mater. 61 3499

    [15]

    Wang H, Xu D S, Yang R 2014 Model. Simul. Mater. Sci. Eng. 22 085004

    [16]

    Sinha V, Mills M J, Williams J C 2006 Metall. Mater. Trans. A 37 2015

    [17]

    Sparkman D M, Millwater H R, Ghosh S 2013 Fatigue Fract. Eng. Mater. Struct. 36 994

    [18]

    Dunne F P E 2014 Curr. Opin. Solid State Mater. Sci. 18 170

    [19]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 024102

    [20]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [21]

    Nose S 1984 J. Chem. Phys. 81 511

    [22]

    Martínez E, Uberuaga B P 2015 Sci. Rep. 5 9084

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [7] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [9] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] 樊倩, 徐建刚, 宋海洋, 张云光. 层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究. 物理学报, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [11] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [12] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [13] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [14] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究. 物理学报, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [15] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [16] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展. 物理学报, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [17] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究. 物理学报, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  4849
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-12-18
  • 刊出日期:  2018-03-05

/

返回文章
返回