搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高光束质量、高功率稳定性激光器的设计及实验研究

安然 范小贞 卢建新 文侨

引用本文:
Citation:

高光束质量、高功率稳定性激光器的设计及实验研究

安然, 范小贞, 卢建新, 文侨

Design and experimental study on high quality beam and high stability power of laser

An Ran, Fan Xiao-Zhen, Lu Jian-Xin, Wen Qiao
PDF
导出引用
  • 高光束质量、高功率稳定性激光器在激光加工、激光测量等领域具有广泛的用途.为了实现激光器腔内光斑聚焦同时减少色散和体积,人们常常将曲面反射镜用在激光谐振腔中,但光束倾斜入射到曲面反射镜往往会引起像散,从而导致光斑质量恶化,并降低激光器的性能.另一方面,在高功率激光器或超短脉冲激光器中,激光增益介质热透镜焦距的起伏,是导致激光输出功率波动的主要原因之一.针对激光器的像散和功率波动这两个问题,本文提出了一套简单高效的解决方案,在考虑像散补偿和热透镜效应的基础上,基于传播变换圆理论,首次提出一种可实现高光束质量、高功率稳定性激光器谐振腔的设计方法,并对采用该方法所设计出的超短脉冲激光器进行理论与实验研究.研究结果表明,利用该方法设计的激光谐振腔,两端臂像散能够完全被补偿,实验上实现了基模高斯光束输出;当激光晶体热透镜焦距改变时,该方法所设计出的激光谐振腔内各关键位置光斑半径的变化,显著地小于普通谐振腔,在相同外界条件下,其输出激光功率稳定性明显优于普通激光器.
    High-performance lasers with high-quality beam laser and high-stability power are widely used for laser machining, laser precision measuring, etc. Reflection curved mirrors are widely used in lasers to provide several small intracavity focal spots and reduce the dispersion and volume of the laser. The primary disadvantage of using reflection curved mirrors in folded resonators is that relatively large angles of incidence deform the circular transverse pattern of the output beam and limit laser performance. In addition, in high power lasers or ultra short pulse lasers, the gain medium thermal lens focal length fluctuation is the primary cause of the instability of laser output power. This paper focuses on beam quality and power stability of laser, and an effective method of solving the two problems, i.e., astigmatism and instability power of laser, is presented. The laser resonator with high-quality laser beam and high-stability power is very easy and intuitive to design by this method, in which the resonator transform circle graphic theory is used and the thermal lens and astigmatism compensation is taken into account. The theoretical investigation shows that the astigmatism in two terminal arms of the folded laser resonator can be successfully eliminated by using this method, and the experimental measurements of the pattern of the laser output beam show that the deformations of spot intensity profiles in the two terminal arms can be simultaneously compensated for completely in the cavity, which is in good agreement with the analytical prediction. When the focal length of the laser crystal thermal lens varies, the variations of radii of spots not only at some key position, but also at all locations of the laser resonance designed by this method, are overtly smaller than the variation of the normal resonant cavity. The stability of the output laser power of the laser is better than that of a universal laser resonator under the same external conditions.
      通信作者: 文侨, wenqiao@szu.edu.cn
    • 基金项目: 国家重大科研仪器设备研制专项(批准号:2012YQ200182)、深圳市协同创新科技计划-深港创新圈联合研发项目(批准号:SGLH20150205162842428)和深圳市基础研究项目(批准号:JCYJ20170302153540973,JCYJ20170412111625378)资助的课题.
      Corresponding author: Wen Qiao, wenqiao@szu.edu.cn
    • Funds: Project supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ200182), Shenzhen-Hong Kong Innovation Cooperation Project, China (Grant No. SGLH20150205162842428), and Science and Technology Innovation Commission of Shenzhen, China (Grant Nos. JCYJ20170302153540973, JCYJ20170412111625378).
    [1]

    Wu D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun H B 2009 Lab. Chip. 9 2391

    [2]

    Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B 2010 Adv. Mater. 22 3204

    [3]

    Wen Q, Sun L Q, Zhang E Y, Tian Q 2009 Mod. Phys. Lett. B 23 2585

    [4]

    Wen Q, Sun L Q, Tian Q, Zhang E Y 2010 J. Opt. 12 015207

    [5]

    Zhang X Y, Zhao S Z, Wang Q P, Zhang Q D, Ozygus B, Weber H 2000 Chin. J. Laser 27 777 (in Chinese) [张行愚, 赵圣之, 王青圃, 张其第, Ozygus B, Weber H 2000 中国激光 27 777]

    [6]

    Wang Q Y 2011 M.S. Dissertation (Xi'an: Xidian University) (in Chinese) [王起阳 2011 硕士学位论文(西安: 西安电子科技大学)]

    [7]

    Skettrup T, Meelby T, Faerch K, Frederiksen S L, Pedersen C 2000 Appl. Opt. 39 24

    [8]

    Skettrup T 2005 J. Opt. A: Pure Appl. Opt. 7 645

    [9]

    Wen Q, Liang G W, Zhang X J, Liang Z S, Wang Y G, Li J, Niu H B 2014 IEEE Photon. J. 6 15022136

    [10]

    Kogelnik H, Ippen E P, Dienes A, Shank C V 1972 IEEE J. Quantum Electron. 8 373

    [11]

    Kane D 1989 Opt. Commun. 71 113

    [12]

    Jamasbi N, Diels J C, Sarger L 1988 J. Mod. Opt. 35 1891

    [13]

    Zhang X J, Yang F, Wang Y G, Sun L Q, Wen Q, Niu H B 2013 Acta Phys. Sin. 62 024211 (in Chinese) [张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨 2013 物理学报 62 024211]

    [14]

    Yefet S, Jouravsky V, Pe’er A 2013 J. Opt. Soc. Am. B 30 549

    [15]

    Wen Q, Zhang X J, Wang Y G, Sun L Q, Niu H B 2014 Opt. Express 22 2309

    [16]

    Narro R, Arronte M, Posada E D, Ponce L, Rodríguez E 2009 Proc. SPIE. 7499

    [17]

    Zhang G Y 1977 Laser J. 4 44 (in Chinese) [张光寅 1977 激光 4 44]

    [18]

    Zhang G Y 1981 Laser J. 8 11 (in Chinese) [张光寅 1981 激光 8 11]

    [19]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 物理学报 57 6987]

    [20]

    Liu J J, Ding S H, Ding Z, Jia H X 2015 Ele-Optic Technol. Appl. 30 25 (in Chinese) [刘佳佳, 丁双红, 丁泽, 贾海旭 2015 光电技术应用 30 25]

  • [1]

    Wu D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun H B 2009 Lab. Chip. 9 2391

    [2]

    Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B 2010 Adv. Mater. 22 3204

    [3]

    Wen Q, Sun L Q, Zhang E Y, Tian Q 2009 Mod. Phys. Lett. B 23 2585

    [4]

    Wen Q, Sun L Q, Tian Q, Zhang E Y 2010 J. Opt. 12 015207

    [5]

    Zhang X Y, Zhao S Z, Wang Q P, Zhang Q D, Ozygus B, Weber H 2000 Chin. J. Laser 27 777 (in Chinese) [张行愚, 赵圣之, 王青圃, 张其第, Ozygus B, Weber H 2000 中国激光 27 777]

    [6]

    Wang Q Y 2011 M.S. Dissertation (Xi'an: Xidian University) (in Chinese) [王起阳 2011 硕士学位论文(西安: 西安电子科技大学)]

    [7]

    Skettrup T, Meelby T, Faerch K, Frederiksen S L, Pedersen C 2000 Appl. Opt. 39 24

    [8]

    Skettrup T 2005 J. Opt. A: Pure Appl. Opt. 7 645

    [9]

    Wen Q, Liang G W, Zhang X J, Liang Z S, Wang Y G, Li J, Niu H B 2014 IEEE Photon. J. 6 15022136

    [10]

    Kogelnik H, Ippen E P, Dienes A, Shank C V 1972 IEEE J. Quantum Electron. 8 373

    [11]

    Kane D 1989 Opt. Commun. 71 113

    [12]

    Jamasbi N, Diels J C, Sarger L 1988 J. Mod. Opt. 35 1891

    [13]

    Zhang X J, Yang F, Wang Y G, Sun L Q, Wen Q, Niu H B 2013 Acta Phys. Sin. 62 024211 (in Chinese) [张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨 2013 物理学报 62 024211]

    [14]

    Yefet S, Jouravsky V, Pe’er A 2013 J. Opt. Soc. Am. B 30 549

    [15]

    Wen Q, Zhang X J, Wang Y G, Sun L Q, Niu H B 2014 Opt. Express 22 2309

    [16]

    Narro R, Arronte M, Posada E D, Ponce L, Rodríguez E 2009 Proc. SPIE. 7499

    [17]

    Zhang G Y 1977 Laser J. 4 44 (in Chinese) [张光寅 1977 激光 4 44]

    [18]

    Zhang G Y 1981 Laser J. 8 11 (in Chinese) [张光寅 1981 激光 8 11]

    [19]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 物理学报 57 6987]

    [20]

    Liu J J, Ding S H, Ding Z, Jia H X 2015 Ele-Optic Technol. Appl. 30 25 (in Chinese) [刘佳佳, 丁双红, 丁泽, 贾海旭 2015 光电技术应用 30 25]

  • [1] 荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰. 高负偏光照稳定性的溶液法像素级IZTO TFT. 物理学报, 2022, 71(13): 138502. doi: 10.7498/aps.71.20220154
    [2] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [3] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法. 物理学报, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [4] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [5] 樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮. 用于空间碎片探测的百赫兹3.31 J高光束质量全固态Nd:YAG激光器. 物理学报, 2017, 66(5): 054205. doi: 10.7498/aps.66.054205
    [6] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器. 物理学报, 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [7] 崔立红, 赵维宁, 颜昌翔. 高斯光束与谐振腔基模模式光路谐振匹配的分析与校准. 物理学报, 2015, 64(22): 224211. doi: 10.7498/aps.64.224211
    [8] 连富强, 樊仲维, 白振岙, 刘一州, 林蔚然, 张晓雷, 赵天卓. 高稳定性、高质量脉冲压缩飞秒光纤激光系统研究. 物理学报, 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [9] 夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜. 近红外波段CO高灵敏检测的稳定性研究. 物理学报, 2013, 62(21): 214208. doi: 10.7498/aps.62.214208
    [10] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [11] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [12] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [13] 苏宙平, 楼祺洪, 董景星, 周 军, 魏运荣. 改善高功率激光二极管阵列光束质量的一种新方法. 物理学报, 2007, 56(10): 5831-5834. doi: 10.7498/aps.56.5831
    [14] 王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫. 可用于超精细加工的高重复率、高光束质量飞秒再生放大脉冲的产生研究. 物理学报, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [15] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究. 物理学报, 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [16] 王德真, 郭世宠, 蔡诗东. 高β等离子体中低混杂漂移不稳定性. 物理学报, 1990, 39(6): 67-74. doi: 10.7498/aps.39.67-2
    [17] 李世忱, 倪文俊, 于建. 多透镜谐振腔光束参数不变性研究. 物理学报, 1989, 38(12): 2049-2053. doi: 10.7498/aps.38.2049
    [18] 周玉美, 吴京生. 高β等离子体的离子-离子束不稳定性. 物理学报, 1983, 32(10): 1319-1322. doi: 10.7498/aps.32.1319
    [19] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算. 物理学报, 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [20] 石秉仁. 高比压环流器等离子体位形的稳定性. 物理学报, 1982, 31(10): 1308-1316. doi: 10.7498/aps.31.1308
计量
  • 文章访问数:  5841
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-04-05

/

返回文章
返回