搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现

陈航宇 宋建军 张洁 胡辉勇 张鹤鸣

引用本文:
Citation:

小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现

陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣

New experimental discovery of channel crystal plane and orientation selection for small-sized uniaxial strained Si PMOS

Chen Hang-Yu, Song Jian-Jun, Zhang Jie, Hu Hui-Yong, Zhang He-Ming
PDF
导出引用
  • 小尺寸单轴应变Si p型金属氧化物半导体(PMOS)沟道反型层迁移率与晶面/晶向密切相关,应变PMOS优化设计时应合理选择沟道的晶面/晶向.目前,文献已有1.5 GPa应力强度下单轴应变Si PMOS沟道反型层迁移率按晶面/晶向排序的理论模型.然而,在器件实际制造过程中,覆盖SiN应力膜工艺是固定的,由于沟道弹性劲度系数具有各向异性,这样,不同晶面/晶向应变PMOS沟道所受应力强度不同,进而导致在实际工艺下沟道反型层迁移率晶面/晶向排序理论模型“失效”.针对该问题,本文采用中国科学院微电子研究所40 nm工艺流程制备了不同晶面/晶向40 nm沟道小尺寸单轴应变Si PMOS与未应变Si PMOS,并通过器件转移特性测试,获得了小尺寸单轴应变Si PMOS反型层迁移率晶面/晶向排序结论.此有关小尺寸单轴应变Si PMOS沟道反型层迁移率晶面/晶向排序的相关结论,由于考虑了工艺实现因素,与文献理论预测排序结果相比,更适于指导实际器件制造;相关分析方法也可为其他应变材料沟道MOS相关问题的解决提供重要技术参考.
    The inversion layer mobility of small-sized uniaxial strained Si p-channel metal oxide semiconductor (PMOS) channel is closely related to the crystal plane and crystal orientation. When optimally designing the strained PMOS, the crystal plane and crystal orientation of the channel should be chosen reasonably. At present, there is a theoretical sort model for the inversion layer mobility of Si PMOS channel at 1.5 GPa stress according to the crystal plane and crystal orientation. However, in the actual manufacturing process of device, the process of covering the SiN stress film is fixed, because the channel coefficient of stiffness is aeolotropic. So, the stress intensities of strained PMOS in different crystal planes and orientation channels are different, which causes the theoretical sort model for the inversion layer mobility to be invalid. To solve this problem, the small-sized uniaxial strained Si PMOS and unstrained Si PMOS with different crystal planes and orientations are fabricated by 40 nm technological process of Chinese Academy of Sciences. The result for the inversion layer mobility of Si PMOS channel according to the crystal plane and crystal orientation is obtained by the device transfer characteristic test. Considering the process implementation factors, the relevant conclusion about the inversion layer mobility of small-sized uniaxial strained Si PMOS channel according to the crystal plane and crystal orientation is more suitable to guide the actual device manufacturing than the theoretical sort result predicted in the literature. At the same time, the relevant analysis method can also provide important technical reference for the solution of other strained material MOS.
      通信作者: 陈航宇, hangyu_chen@qq.com
    • 基金项目: 高等学校学科创新引智计划(批准号:B12026)资助的课题.
      Corresponding author: Chen Hang-Yu, hangyu_chen@qq.com
    • Funds: Project supported by the 111 Project, China (Grant No. B12026).
    [1]

    Guan H, Guo H 2017 Chin. Phys. B 26 058501

    [2]

    Theerani J T 2017 IEEE Trans. Electron Dev. 64 3316

    [3]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Comput. Theor. Nanos 12 1610

    [4]

    Hao M R, Hu H Y, Liao C G, Wang B, Zhao X H, Kang H Y, Su H, Zhang H M 2017 Acta Phys. Sin. 66 076101 (in Chinese) [郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣 2017 物理学报 66 076101]

    [5]

    Song J J, Yang C, Zhu H, Zhang H M, Xuan R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 物理学报 63 118501]

    [6]

    Liu W F, Song J J 2014 Acta Phys. Sin. 63 238501 (in Chinese) [刘伟峰, 宋建军 2014 物理学报 63 238501]

    [7]

    Lee C H, Southwick R G, Bao R, Mochizuki S, Paruchuri V, Jagannathan H 2017 Symposia on VLSI Technology Kyoto, Japan, June 5-8, 2017 p126

    [8]

    Li L, Liu H X, Yang Z N 2012 Acta Phys. Sin. 61 166101 (in Chinese) [李立, 刘红侠, 杨兆年 2012 物理学报 61 166101]

    [9]

    Kasim J, Reichel C, Dilliway G, Bai B, Zakowsky N 2015 Solid-State Electronics 110 19

    [10]

    Huang H L, Chen J K, Houng M P 2013 Solid-State Electron. 79 31

    [11]

    Wang X Y 2012 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese) [王晓艳 2012 博士学位论文(西安:西安电子科技大学)]

    [12]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 137104 (in Chinese) [戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川 2012 物理学报 61 137104]

    [13]

    Wang G Y, Song J J, Zhang H M, Hu H Y, Ma J L, Wang X Y 2012 Acta Phys. Sin. 61 097103 (in Chinese) [王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳 2012 物理学报 61 097103]

    [14]

    Zhang W H, Li Z C, Guan Y H, Zhang Y F 2017 Chin. Phys. B 26 078502

    [15]

    Krishnamohan T, Kim D, Dinh T V, Pham A, Meinerzhagen B, Jungemann C, Saraswat K 2008 Electron Devices Meeting San Francisco, CA, USA, December 15-17, 2008 p1

    [16]

    Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

    [17]

    Yang M Y, Song J J, Zhang J, Tang Z H, Zhang H M, Hu H Y 2015 Acta Phys. Sin. 64 238502 (in Chinese) [杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇 2015 物理学报 64 238502]

    [18]

    Song J J 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese) [宋建军 2008 博士学位论文(西安:西安电子科技大学)]

    [19]

    Song J J, Bao W T, Zhang J, Tang Z H, Tan K Z, Cui W, Hu H Y, Zhang H M 2016 Acta Phys. Sin. 65 018501 (in Chinese) [宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣 2016 物理学报 65 018501]

  • [1]

    Guan H, Guo H 2017 Chin. Phys. B 26 058501

    [2]

    Theerani J T 2017 IEEE Trans. Electron Dev. 64 3316

    [3]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Comput. Theor. Nanos 12 1610

    [4]

    Hao M R, Hu H Y, Liao C G, Wang B, Zhao X H, Kang H Y, Su H, Zhang H M 2017 Acta Phys. Sin. 66 076101 (in Chinese) [郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣 2017 物理学报 66 076101]

    [5]

    Song J J, Yang C, Zhu H, Zhang H M, Xuan R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 物理学报 63 118501]

    [6]

    Liu W F, Song J J 2014 Acta Phys. Sin. 63 238501 (in Chinese) [刘伟峰, 宋建军 2014 物理学报 63 238501]

    [7]

    Lee C H, Southwick R G, Bao R, Mochizuki S, Paruchuri V, Jagannathan H 2017 Symposia on VLSI Technology Kyoto, Japan, June 5-8, 2017 p126

    [8]

    Li L, Liu H X, Yang Z N 2012 Acta Phys. Sin. 61 166101 (in Chinese) [李立, 刘红侠, 杨兆年 2012 物理学报 61 166101]

    [9]

    Kasim J, Reichel C, Dilliway G, Bai B, Zakowsky N 2015 Solid-State Electronics 110 19

    [10]

    Huang H L, Chen J K, Houng M P 2013 Solid-State Electron. 79 31

    [11]

    Wang X Y 2012 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese) [王晓艳 2012 博士学位论文(西安:西安电子科技大学)]

    [12]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 137104 (in Chinese) [戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川 2012 物理学报 61 137104]

    [13]

    Wang G Y, Song J J, Zhang H M, Hu H Y, Ma J L, Wang X Y 2012 Acta Phys. Sin. 61 097103 (in Chinese) [王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳 2012 物理学报 61 097103]

    [14]

    Zhang W H, Li Z C, Guan Y H, Zhang Y F 2017 Chin. Phys. B 26 078502

    [15]

    Krishnamohan T, Kim D, Dinh T V, Pham A, Meinerzhagen B, Jungemann C, Saraswat K 2008 Electron Devices Meeting San Francisco, CA, USA, December 15-17, 2008 p1

    [16]

    Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

    [17]

    Yang M Y, Song J J, Zhang J, Tang Z H, Zhang H M, Hu H Y 2015 Acta Phys. Sin. 64 238502 (in Chinese) [杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇 2015 物理学报 64 238502]

    [18]

    Song J J 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese) [宋建军 2008 博士学位论文(西安:西安电子科技大学)]

    [19]

    Song J J, Bao W T, Zhang J, Tang Z H, Tan K Z, Cui W, Hu H Y, Zhang H M 2016 Acta Phys. Sin. 65 018501 (in Chinese) [宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣 2016 物理学报 65 018501]

  • [1] 张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟. 单轴应变对Sb2Se3空穴迁移率的影响研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240175
    [2] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [3] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [4] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [5] 韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华. 非金属原子掺杂扶手椅型砷烯纳米管的磁电子性质及调控. 物理学报, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [6] 汤家鑫, 范志强, 邓小清, 张振华. 非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应. 物理学报, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [7] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [8] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [9] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率. 物理学报, 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [10] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [11] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理. 物理学报, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [12] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [13] 靳钊, 乔丽萍, 郭晨, 王江安, 刘策. 单轴应变Si(001)任意晶向电子电导有效质量模型. 物理学报, 2013, 62(5): 058501. doi: 10.7498/aps.62.058501
    [14] 王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华. 应变Si/(001)Si1-xGex电子迁移率. 物理学报, 2011, 60(7): 077205. doi: 10.7498/aps.60.077205
    [15] 王冠宇, 马建立, 张鹤鸣, 王晓艳, 王斌. [110]/(001)单轴应变Si本征载流子浓度模型. 物理学报, 2011, 60(7): 077105. doi: 10.7498/aps.60.077105
    [16] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [17] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [18] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟. 物理学报, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [19] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  4930
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 修回日期:  2017-12-19
  • 刊出日期:  2019-03-20

/

返回文章
返回