搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析

王一 杨晨 郭祥 王继红 刘雪飞 魏节敏 郎啟智 罗子江 丁召

引用本文:
Citation:

Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析

王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召

Thermodynamic analysis of Al0.17Ga0.83As/GaAs (001) in annealing process

Wang Yi, Yang Chen, Guo Xiang, Wang Ji-Hong, Liu Xue-Fei, Wei Jie-Ming, Lang Qi-Zhi, Luo Zi-Jiang, Ding Zhao
PDF
导出引用
  • 在As4束流等效压强为1.210-3 Pa、退火60 min条件下改变退火温度,对Al0.17Ga0.83As/GaAs薄膜表面平坦化的条件进行了探讨.定量分析了薄膜表面坑、岛与平台的覆盖率和台阶-平台间薄膜粗糙度随退火温度变化的规律,得到最合适的退火温度为545℃(1℃);根据退火模型发现退火温度的改变会影响参与熟化的原子的数量,熟化原子比正比于退火温度,即 T.退火温度540℃条件下退火约60 min,薄膜表面达到基本平坦,推测此时0.20 0.25;退火温度为545℃时,推测退火时间约为5560 min.本实验得到的结论可以为生长平坦的Al0.17Ga0.83As/GaAs薄膜提供理论与实验指导.
    For matching lattice parameters, AlGaAs alloy is usually grown on a GaAs (001) substrate. The AlGaAs/GaAs multilayer structure has been widely used to manufacture various photoelectric and electronic devices. The practical importance of atomic flat surfaces lies in improving the performances of modern optoelectronic devices based on AlGaAs/GaAs multilayer structure. The influence of temperature on the flatness of the film has not been analyzed in detail, so it is very important to prepare the surface at an atomic level by adjusting annealing temperature. In this paper, 15 ML Al0.17Ga0.83As are deposited on an n-doped GaAs (001) substrate by the molecular beam epitaxy (MBE) technique. We study the effects of various annealing temperatures (520℃, 530℃, 540℃) on the flattening of Al0.17Ga0.83As/GaAs (001) surface under the same condition of arsenic BEP about 1.210-3 Pa, annealing time 60 min and growth rate (0.17 ML/s). The (1000 nm1000 nm) scanning tunneling microscope (STM) images and Fourier transform graphs are obtained to show the evolution of surface morphology. In a temperature range of 520-530℃, island is ripening, the coverage of the island increases, the pit also begins to merge into a larger pit; when the temperature exceeds 530℃, the increasing of ripening rate leads to a big island and the pit turns into terrace, while the coverage of island and the pit gradually decreases. In the annealing process, the area of terrace increases and gradually approaches to 100%. By quantitatively analysing the coverage of pit (island, terrace) and root mean square (RMS) roughness varying with the annealing temperature, a 545℃ (1℃) better annealing temperature is proposed by fitting the curve of RMS roughness variation. At the same time, the film annealing model is analyzed in this paper. Comparing the results in the literature with our experimental data, it is found that the change of annealing temperature can influence the number of active atoms, in which the ratio of annealing atoms contributing to surface flattening () should be proportional to the annealing temperature. According to the experimental results, Al0.17Ga0.83As surface basically presents the flat morphology with 60 min annealing at 540℃ when 0.20 0.25. When the annealing temperature reaches 545℃, we can also speculate that the annealing time is about 55-60 min. This is consistent with our previous conclusion. It should be pointed out that our experiment avoids metallizing the film surface caused by the anti-evaporation of the atoms and the metal gallium atoms climbing on the surface of the film when the annealing temperature is too high. The experimental results are applicable to the Al0.17 Ga0.83As thin film growth and annealing.
      通信作者: 丁召, zding@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61564002,11664005,61604046)和贵州省科学技术基金(批准号:黔科合J字[2014]2046,黔科合LH字[2016]7436,黔科合基础[2017]1055)资助的课题.
      Corresponding author: Ding Zhao, zding@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002, 11664005, 61604046) and the Foundation of Guizhou Provincial Science and Technology Department, China (Grant Nos. QKH-J[2014]2046, QKH-LH[2016]7436, QKH-[2017]1055).
    [1]

    Wei W Z, Guo X, Liu K, Wang Y, Luo Z J, Zhou Q, Wang J H, Ding Z 2013 Acta Phys. Sin. 62 226801 (in Chinese)[魏文喆, 郭祥, 刘珂, 王一, 罗子江, 周清, 王继红, 丁召 2013 物理学报 62 226801]

    [2]

    Walid F, Nouredine S, Slimane O, Riaz H M, Dler J, Noor A S, Mohsin A, David T, Mohamed H 2017 Superlattices Microst. 111 1010

    [3]

    Maciej A K, Anna S, Kamil K, Marcin M, Karolina P, Rafał J, Renata K, Marek G, Adam B 2018 Mat. Sci. Semicon. Proc. 74 88

    [4]

    Johnson M B, Pfister M, Alvarado S F, Salemink H W M 1995 Microelectron. Eng. 27 31

    [5]

    Stumpf R, Feibelman P J 1996 Phys. Rev. B 54 5145

    [6]

    Makoto K, Naoki K 1997 J. Cryst. Growth 174 513

    [7]

    Pfeiffer L, Schubert E F, West K W 1991 Appl. Phys. Lett. 58 2258

    [8]

    Xue Q K, Hashizume T, Sakurai T 1997 Prog. Surf. Sci. 56 1

    [9]

    Madras G, McCoy B J 2003 J. Chem. Phys. 119 1683

    [10]

    Fan Y, Karpov I, Bratina G, Sorba L, Gladfelter W 1996 J. Vac. Sci. Technol. B 14 623

    [11]

    Mao G M, Wang Q, Chai Z, Cao J W, Liu H, Ren X M, Maleev N A, Vasil'ev A P, Zhukov A E, Ustinov V M 2018 Mat. Sci. Semicon. Proc. 79 20

    [12]

    Sadia I S, Ali N B 2017 Data in Brief 14 618

    [13]

    Mahmoud D, Amel R, Radhouane C, Faouzi H 2017 J. Alloy. Compd. 728 1165

    [14]

    Amini M, Soleimani M, Ehsani M H 2017 Superlattices Microst. 112 680

    [15]

    Kim J H, Lee H J 2014 Mater. Lett. 123 1

    [16]

    Akhundov I O, Abblperovich V L, Latyshev A V, Terekhov A S 2013 Appl. Surf. Sci. 269 2

    [17]

    Kazantsev D M, Akhundov I O, Karpov A N, Shwartz N L, Alperovich V L, Terekhov A S 2015 Appl. Surf. Sci. 333 141

    [18]

    Wei W Z, Wang Y, Xiang G, Luo Z J, Zhen Z, Zhou H Y, Ding Z 2015 Appl. Surf. Sci. 345 400

    [19]

    Liu K, Guo X, Zhou Q, Zhang B C, Luo Z J, Ding Z 2014 Chin. Phys. B 23 046806

    [20]

    Liu K, Zhou Q, Zhou X, Guo X, Luo Z J, Wang J H, Ding Z 2013 Chin. Phys. B 22 026801

    [21]

    Zhou H Y, Zhao Z, Guo X, Wei W Z, Wang Y, Luo Z J, Liu J, Wang J H, Zhou X, Ding Z 2016 Chin. J. Vac. Sci. Technol. 36 477 (in Chinese)[周海月, 赵振, 郭祥, 魏文喆, 王一, 罗子江, 刘健, 王继红, 周勋, 丁召 2016 真空科学与技术学报 36 477]

    [22]

    Alperovich V L, Akhundov I O, Rudaya N S, Sheglov D V, Rodyakina E E, Latyshev A V 2009 Appl. Phys. Lett. 94 101908

  • [1]

    Wei W Z, Guo X, Liu K, Wang Y, Luo Z J, Zhou Q, Wang J H, Ding Z 2013 Acta Phys. Sin. 62 226801 (in Chinese)[魏文喆, 郭祥, 刘珂, 王一, 罗子江, 周清, 王继红, 丁召 2013 物理学报 62 226801]

    [2]

    Walid F, Nouredine S, Slimane O, Riaz H M, Dler J, Noor A S, Mohsin A, David T, Mohamed H 2017 Superlattices Microst. 111 1010

    [3]

    Maciej A K, Anna S, Kamil K, Marcin M, Karolina P, Rafał J, Renata K, Marek G, Adam B 2018 Mat. Sci. Semicon. Proc. 74 88

    [4]

    Johnson M B, Pfister M, Alvarado S F, Salemink H W M 1995 Microelectron. Eng. 27 31

    [5]

    Stumpf R, Feibelman P J 1996 Phys. Rev. B 54 5145

    [6]

    Makoto K, Naoki K 1997 J. Cryst. Growth 174 513

    [7]

    Pfeiffer L, Schubert E F, West K W 1991 Appl. Phys. Lett. 58 2258

    [8]

    Xue Q K, Hashizume T, Sakurai T 1997 Prog. Surf. Sci. 56 1

    [9]

    Madras G, McCoy B J 2003 J. Chem. Phys. 119 1683

    [10]

    Fan Y, Karpov I, Bratina G, Sorba L, Gladfelter W 1996 J. Vac. Sci. Technol. B 14 623

    [11]

    Mao G M, Wang Q, Chai Z, Cao J W, Liu H, Ren X M, Maleev N A, Vasil'ev A P, Zhukov A E, Ustinov V M 2018 Mat. Sci. Semicon. Proc. 79 20

    [12]

    Sadia I S, Ali N B 2017 Data in Brief 14 618

    [13]

    Mahmoud D, Amel R, Radhouane C, Faouzi H 2017 J. Alloy. Compd. 728 1165

    [14]

    Amini M, Soleimani M, Ehsani M H 2017 Superlattices Microst. 112 680

    [15]

    Kim J H, Lee H J 2014 Mater. Lett. 123 1

    [16]

    Akhundov I O, Abblperovich V L, Latyshev A V, Terekhov A S 2013 Appl. Surf. Sci. 269 2

    [17]

    Kazantsev D M, Akhundov I O, Karpov A N, Shwartz N L, Alperovich V L, Terekhov A S 2015 Appl. Surf. Sci. 333 141

    [18]

    Wei W Z, Wang Y, Xiang G, Luo Z J, Zhen Z, Zhou H Y, Ding Z 2015 Appl. Surf. Sci. 345 400

    [19]

    Liu K, Guo X, Zhou Q, Zhang B C, Luo Z J, Ding Z 2014 Chin. Phys. B 23 046806

    [20]

    Liu K, Zhou Q, Zhou X, Guo X, Luo Z J, Wang J H, Ding Z 2013 Chin. Phys. B 22 026801

    [21]

    Zhou H Y, Zhao Z, Guo X, Wei W Z, Wang Y, Luo Z J, Liu J, Wang J H, Zhou X, Ding Z 2016 Chin. J. Vac. Sci. Technol. 36 477 (in Chinese)[周海月, 赵振, 郭祥, 魏文喆, 王一, 罗子江, 刘健, 王继红, 周勋, 丁召 2016 真空科学与技术学报 36 477]

    [22]

    Alperovich V L, Akhundov I O, Rudaya N S, Sheglov D V, Rodyakina E E, Latyshev A V 2009 Appl. Phys. Lett. 94 101908

  • [1] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [2] 杜晓莉, 张修丽, 刘宏波, 季鑫. 聚(偏氟乙烯-三氟乙烯)纳米薄膜极化反转与疲劳特性. 物理学报, 2015, 64(16): 167701. doi: 10.7498/aps.64.167701
    [3] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [4] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [5] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [6] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [7] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [8] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究. 物理学报, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [9] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [10] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [11] 王 楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南 貌, 阮海波. p型ZnO薄膜的制备及特性. 物理学报, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [12] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [13] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [14] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [15] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [16] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [17] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [18] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  4368
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-02-02
  • 刊出日期:  2019-04-20

/

返回文章
返回