搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强散射过程中基于奇异值分解的光学传输矩阵优化方法

张熙程 方龙杰 庞霖

引用本文:
Citation:

强散射过程中基于奇异值分解的光学传输矩阵优化方法

张熙程, 方龙杰, 庞霖

Transmission matrix optimization based on singular value decomposition in strong scattering process

Zhang Xi-Cheng, Fang Long-Jie, Pang Lin
PDF
导出引用
  • 通过测量散射介质的传输矩阵能够控制光在此介质中的传输,但目前没有通过优化传输矩阵(即搜索介质本征传输矩阵)来提高光传输效率的研究.通过测量介质的传输矩阵进行奇异值分解与背景滤波,初步优化了传输矩阵后,提出通过遗传算法再次优化传输矩阵,实现了进一步优化传输矩阵,提高了聚焦效率和信噪比.所提方法为可见光在生物组织中的成像提供了一种新的思路和方法.
    In the last decade, the scattering medium has been gradually attacking attention from researchers. Among the proposed approaches, the transmission matrix (TM) is considered as an effect way to describe the scattering properties which relate to input optical and output optical fields. However, the acquired transmission matrix and its eigenvalues strongly depend on the experimental conditions, such as the numbers of input channels (limited numerical aperture and illumination area, or the pixel number of the spatial light modulator) and output channels. In other words, the actual transmission matrix of the scattering medium is the acquired transmission matrix with infinite numbers of the input and output channels. We propose an approach to obtaining the actual matrix by evaluating its eigenvalues. First, the matrix is expressed by the singular value decomposition to obtain its inverse matrix. Then first level optimization is to dispose of some extreme singular values to remove the ill-conditioned problem of the matrix, and then, as a second level optimization, the genetic algorithm is to remove the eigenvalues which have the negative contributions to the intensity of the selected focal point. Our experiments show that the gray value of the intensity and the signal-to-noise ratio (SNR) of the focal point after employing the phase pattern are 129 and 7.54, respectively. After the first level optimization, the gray value of the intensity and the SNR rise to 172 and 9.73, respectively. Then, they reach to 192 and 10.29, respectively, after adopting the genetic algorithm. After the second level optimizations, the intensity at the focal point increases 48.8% compared with the case with just the optimized phase pattern from the acquired TM, and the SNR increases by nearly 36.5%. The reason behind the increase of the intensity after the optimizations, we believe, is that the transmission matrix of the scattering medium reaches its actual matrix in certain conditions. The proposed approach opens the way to obtaining the actual transmission matrix by mathematic optimizations without increasing the experimental levels.
      通信作者: 庞霖, panglin_p@yahoo.com
    • 基金项目: 国家自然科学基金(批准号:61377054,61675140)资助的课题.
      Corresponding author: Pang Lin, panglin_p@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377054, 61675140).
    [1]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309

    [2]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071

    [3]

    Conkey D B, Brown A N, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 4840

    [4]

    Booth M J, Neil M A, Juskaitis R, Wilson T 2002 Proc. NAS USA 99 5788

    [5]

    Vellekoop I M 2008 Ph. D. Dissertation (Enschede:Univeristy of Twente) (in Netherlands)

    [6]

    Fang L, Zhang X, Zuo H, Pang L 2018 Opt. Commun. 407 301

    [7]

    Fang L, Zhang C, Zuo H, Zhu J, Pang L 2017 Chin. Opt. Lett. 15 102901

    [8]

    Vellekoop I M, Aegerter C M 2010 Opt. Lett. 35 1245

    [9]

    Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430

    [10]

    Vellekoop I M, Cui M, Yang C 2012 Appl. Phys. Lett. 101 2309

    [11]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photon. 4 320

    [12]

    Vellekoop I M, Putten E G V, Lagendijk A, Mosk A P 2008 Opt. Express 16 67

    [13]

    Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81

    [14]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [15]

    Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S 2011 New J. Phys. 3 1

    [16]

    Chaigne T, Katz O, Boccara A C, Fink M, Bossy E, Gigan S 2013 Nat. Photon. 8 58

    [17]

    Dai F 1992 IEEE Trans. Microw. Theor. Tech. 40 1538

    [18]

    de Aguiar H B, Gigan S, Brasselet S 2016 Phys. Rev. A 94 043830

    [19]

    Gao G F, Zhao J Z, Fu Z X 2014 Adv. Mat. Res. 1027 262

    [20]

    Guillaume G, Fortin N 2014 J. Building Perform. Simulat. 7 445

    [21]

    Han G, Wang T 2014 The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems Tianjin, China, September 1, 2013 p383

    [22]

    Kim M, Choi W, Choi Y, Yoon C, Choi W 2015 Opt. Express 23 12648

    [23]

    Patil M B, Okuyama Y, Ohkura Y, Toyabe T, Ihara S 1994 Solid-State Electron. 37 1359

    [24]

    Tripathi S, Paxman R, Bifano T, Toussaint K C 2012 Opt. Express 20 16067

    [25]

    Akbulut D, Huisman T J, Putten E G V, Vos W L, Mosk A P 2011 Opt. Express 19 4017

    [26]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733

    [27]

    Tao X, Bodington D, Reinig M, Kubby J 2015 Opt. Express 23 14168

    [28]

    Zhang X, Kner P 2014 J. Opt. 16 125704

    [29]

    Li Z, Cao J, Zhao X, Liu W 2015 Opt. Commun. 338 11

    [30]

    Larrat B, Pernot M, Montaldo G, Fink M 2010 IEEE Trans. Ultrason. Ferroelectr. Frequency Control 57 1734

  • [1]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309

    [2]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071

    [3]

    Conkey D B, Brown A N, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 4840

    [4]

    Booth M J, Neil M A, Juskaitis R, Wilson T 2002 Proc. NAS USA 99 5788

    [5]

    Vellekoop I M 2008 Ph. D. Dissertation (Enschede:Univeristy of Twente) (in Netherlands)

    [6]

    Fang L, Zhang X, Zuo H, Pang L 2018 Opt. Commun. 407 301

    [7]

    Fang L, Zhang C, Zuo H, Zhu J, Pang L 2017 Chin. Opt. Lett. 15 102901

    [8]

    Vellekoop I M, Aegerter C M 2010 Opt. Lett. 35 1245

    [9]

    Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430

    [10]

    Vellekoop I M, Cui M, Yang C 2012 Appl. Phys. Lett. 101 2309

    [11]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photon. 4 320

    [12]

    Vellekoop I M, Putten E G V, Lagendijk A, Mosk A P 2008 Opt. Express 16 67

    [13]

    Popoff S, Lerosey G, Fink M, Boccara A C, Gigan S 2010 Nat. Commun. 1 81

    [14]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [15]

    Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S 2011 New J. Phys. 3 1

    [16]

    Chaigne T, Katz O, Boccara A C, Fink M, Bossy E, Gigan S 2013 Nat. Photon. 8 58

    [17]

    Dai F 1992 IEEE Trans. Microw. Theor. Tech. 40 1538

    [18]

    de Aguiar H B, Gigan S, Brasselet S 2016 Phys. Rev. A 94 043830

    [19]

    Gao G F, Zhao J Z, Fu Z X 2014 Adv. Mat. Res. 1027 262

    [20]

    Guillaume G, Fortin N 2014 J. Building Perform. Simulat. 7 445

    [21]

    Han G, Wang T 2014 The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems Tianjin, China, September 1, 2013 p383

    [22]

    Kim M, Choi W, Choi Y, Yoon C, Choi W 2015 Opt. Express 23 12648

    [23]

    Patil M B, Okuyama Y, Ohkura Y, Toyabe T, Ihara S 1994 Solid-State Electron. 37 1359

    [24]

    Tripathi S, Paxman R, Bifano T, Toussaint K C 2012 Opt. Express 20 16067

    [25]

    Akbulut D, Huisman T J, Putten E G V, Vos W L, Mosk A P 2011 Opt. Express 19 4017

    [26]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733

    [27]

    Tao X, Bodington D, Reinig M, Kubby J 2015 Opt. Express 23 14168

    [28]

    Zhang X, Kner P 2014 J. Opt. 16 125704

    [29]

    Li Z, Cao J, Zhao X, Liu W 2015 Opt. Commun. 338 11

    [30]

    Larrat B, Pernot M, Montaldo G, Fink M 2010 IEEE Trans. Ultrason. Ferroelectr. Frequency Control 57 1734

  • [1] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [5] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [6] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [7] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [8] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [11] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [12] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [13] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [14] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [15] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [16] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [17] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [18] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [19] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构. 物理学报, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [20] 谢逸群, 郭 旗. 非局域克尔介质中空间光孤子的相互作用. 物理学报, 2004, 53(9): 3020-3024. doi: 10.7498/aps.53.3020
计量
  • 文章访问数:  5068
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-03-19
  • 刊出日期:  2019-05-20

/

返回文章
返回