搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论圆偏振激光与固体靶作用产生高次谐波

蔡怀鹏 高健 李博原 刘峰 陈黎明 远晓辉 陈民 盛政明 张杰

引用本文:
Citation:

相对论圆偏振激光与固体靶作用产生高次谐波

蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰

High order harmonics generation by relativistically circularly polarized laser-solid interaction

Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3
PDF
导出引用
  • 超短超强激光与固体靶表面等离子体相互作用可以通过高次谐波的方式产生从极紫外到软X射线波段的相干辐射,获得飞秒甚至阿秒量级的超短脉冲,可用于观测原子或分子中的电子运动等超快动力学过程.本文实验研究了相对论圆偏振飞秒激光与固体靶相互作用的高次谐波产生过程,实验结果表明,在较大入射角下,圆偏振激光也可以有效地产生高次谐波辐射.通过预脉冲控制靶表面的预等离子体密度标长,发现高次谐波的产生效率随密度标长的增加而单调下降.进一步通过二维粒子模拟程序,分析了激光的偏振以及预等离子体密度标长对高次谐波产生的影响,很好地解释了实验观测结果.
    Coherent extreme ultra-violet (XUV) and soft X-ray light with attosecond duration enable the time-resolved study of electron dynamics in a completely new regime. High order harmonic generation (HHG) from the highly nonlinear process of relativistically intense laser interactions with solid-density plasma offers a very new way to generate such a light source. In this paper, we study the HHG by a relativistically circularly polarized femtosecond laser interacting with solid-density plasma. The experiment is carried out by using a 200 TW Ti:sapphire laser system at the Laboratory for Laser Plasmas in Shanghai Jiao Tong University, China. The laser system can deliver laser pulses at 800 nm with a pulse duration (full width at half maximum, FWHM) of 25 fs and repetition rate of 10 Hz. The circularly polarized laser beam with an energy of 460 mJ is used in the experiment and focused by an F/4 off-axis parabolic mirror at an incidence angle of 40 with respect to the glass target. The focal spot diameter is 6 m (FWHM) with 25% energy enclosed, giving a calculated peak intensity of 1.61019 W/cm2. We detect high order harmonics by a flat-field spectrometer. The experimental results show that high order harmonic radiation can also be efficiently generated by a circularly polarized laser at a lager incidence angle, which provides a straightforward way to obtain a circularly polarized XUV light source. Different plasma density scale lengths are obtained by introducing a prepulse with different delays. We study the dependence of HHG efficiency on plasma density scale length by the circularly polarized laser, and find an optimal density scale length to exist. The influence of laser polarization and plasma density scale length on HHG are studied by two-dimensional (2D) PIC simulations. The good agreement is found between the 2D PIC simulations and experimental results. We plan to measure the polarization characteristics of high order harmonic produced by the interaction of circularly polarized lasers with solid target in the future. It is expected to obtain a compact coherent circularly polarized XUV light source, which can be used to study the ultra-fast dynamic process of magnetic materials.
      通信作者: 刘峰, liuf001@sjtu.edu.cn;lmchen@iphy.ac.cn ; 陈黎明, liuf001@sjtu.edu.cn;lmchen@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CBA01504)、国家自然科学基金(批准号:11721091,11305103,11775144)、上海市自然科学基金(批准号:18ZR1419200,13ZR1456300)和中国博士后科学基金(批准号:2017M621443)资助的课题.
      Corresponding author: Liu Feng1\2, liuf001@sjtu.edu.cn;lmchen@iphy.ac.cn ; Chen Li-Ming1\2\3, liuf001@sjtu.edu.cn;lmchen@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01504), the National Natural Science Foundation of China (Grant Nos. 11721091, 11305103, 11775144), the Natural Science Foundation of Shanghai, China (Grant Nos. 18ZR1419200, 13ZR1456300), and the China Postdoctoral Science Foundation (Grant No. 2017M621443).
    [1]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [2]

    Ravasio A, Gauthier D, Maia F R, Billon M, Caumes J P, Garzella D, Géléoc M, Gobert O, Hergott J F, Pena A M, Perez H, Carré B, Bourhis E, Gierak J, Madouri A, Mailly D, Schiedt B, Fajardo M, Gautier J, Zeitoun P, Bucksbaum P H, Hajdu J, Merdji H 2009 Phys. Rev. Lett. 103 028104

    [3]

    Shaw B H, Tilborg J V, Sokollik T, Schroeder C B, Mckinney W R, Artemiev N A, Yashchuk V V, Gullikson E M, Leemans W P 2013 J. Appl. Phys. 114 043106

    [4]

    Fan T T, Grychtol P, Knut R, Carlos H G, Hickstein D D, Zusin D, Gentry C, Dollar F J, Mancuso C A, Hogle C W, Kfir O, Legut D, Carva K, Ellis J L, Dorney K M, Chen C, Shpyrko O G, Fullerton E E, Cohen O, Oppeneer P M, Miloševic D B, Becker A, Agnieszka A, Becker J, Popmintchev T, Murnane M M, Kapteyn H C 2015 Proc. Natl. Acad. Sci. USA 112 14206

    [5]

    Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Justin M, Shaw, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photon. 9 99

    [6]

    Cireasa R, Boguslavskiy A E, Pons B, Wong M C H, Descamps D, Petit S, Ruf H, Thiré N, Ferré A, Suarez J, Higuet J, Schmidt B E, Alharbi A F, Légaré F, Blanchet V, Fabre B, Patchkovskii S, Smirnova O, Mairesse Y, Bhardwaj V R 2015 Nat. Phys. 11 654

    [7]

    Allaria E, Diviacco B, Callegari C, Finetti C, Mahieu B, Viefhaus J, Zangrando M, de Ninno G, Lambert G, Ferrari E, Buck J, Ilchen M, Vodungbo B, Mahne N, Svetina C, Spezzani C, Mitri S D, Penco G, Trovó M, Fawley W M, Rebernik P R, Gauthier D, Grazioli C, Coreno M, Ressel B, Kivimäki A, Mazza T, Glaser L, Scholz F, Seltmann J, Gessler P, Grnert J, de Fanis A, Meyer M, Knie A, Moeller S P, Raimondi L, Capotondi F, Pedersoli E, Plekan O, Danailov M B, Demidovich A, Nikolov I, Abrami A, Gautier J, Lning J, Zeitoun P, Giannessi L 2014 Phys. Rev. X 4 041040

    [8]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005 Phys. Rev. Lett. 94 243901

    [9]

    Bocoum M, Thévenet M, Böhle F, Beaurepaire B, Vernier A, Jullien A 2016 Phys. Rev. Lett. 116 185001

    [10]

    Lavocat-Dubuis X, Matte J P 2010 Phys. Plasmas 17 093105

    [11]

    Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李昆, 张杰, 余玮 2003 物理学报 52 1412]

    [12]

    Zhang Q J, Sheng Z M, Zhang J 2004 Acta Phys. Sin. 53 2180 (in Chinese)[张秋菊, 盛正明, 张杰 2004 物理学报 53 2180]

    [13]

    Cerchez M, Giesecke A L, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T 2013 Phys. Rev. Lett. 110 065003

    [14]

    Quéré F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004

    [15]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasma 1 745

    [16]

    Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 046404

    [17]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [18]

    Easter J H, Nees J A, Hou B X, Mordovanakis A, Mourou G, Thomas A G R, Krushelnick K 2013 New J. Phys. 15 025035

    [19]

    Rykovanov S, Geissler M, Meyer-Ter-Vehn J, Tsakiris G 2008 New J. Phys. 10 025025

    [20]

    Yeung M, Bierbach J, Eckner E, Rykovanov S, Kuschel S, Sävert A, Forster M, Rödel C, Paulus G G, Cousens S, Coughlan M, Dromey B, Zepf M 2015 Phys. Rev. Lett. 115 193903

    [21]

    Chen Z Y, Li X Y, Li B Y, Chen M, Liu F 2018 Opt. Express 26 4572

    [22]

    Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515

    [23]

    Gao J, Liu F, Ge X L, Deng Y Q, Fang Y, Wei W Q, Yang S, Yuan X H, Chen M, Sheng Z M, Zhang J 2017 Chin. Opt. Lett. 15 081902

    [24]

    Ge X L, Fang Y, Yang S, Wei W Q, Liu F, Yuan P, Ma J G, Zhao L, Yuan X H, Zhang J 2018 Chin. Opt. Lett. 16 013201

  • [1]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [2]

    Ravasio A, Gauthier D, Maia F R, Billon M, Caumes J P, Garzella D, Géléoc M, Gobert O, Hergott J F, Pena A M, Perez H, Carré B, Bourhis E, Gierak J, Madouri A, Mailly D, Schiedt B, Fajardo M, Gautier J, Zeitoun P, Bucksbaum P H, Hajdu J, Merdji H 2009 Phys. Rev. Lett. 103 028104

    [3]

    Shaw B H, Tilborg J V, Sokollik T, Schroeder C B, Mckinney W R, Artemiev N A, Yashchuk V V, Gullikson E M, Leemans W P 2013 J. Appl. Phys. 114 043106

    [4]

    Fan T T, Grychtol P, Knut R, Carlos H G, Hickstein D D, Zusin D, Gentry C, Dollar F J, Mancuso C A, Hogle C W, Kfir O, Legut D, Carva K, Ellis J L, Dorney K M, Chen C, Shpyrko O G, Fullerton E E, Cohen O, Oppeneer P M, Miloševic D B, Becker A, Agnieszka A, Becker J, Popmintchev T, Murnane M M, Kapteyn H C 2015 Proc. Natl. Acad. Sci. USA 112 14206

    [5]

    Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Justin M, Shaw, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photon. 9 99

    [6]

    Cireasa R, Boguslavskiy A E, Pons B, Wong M C H, Descamps D, Petit S, Ruf H, Thiré N, Ferré A, Suarez J, Higuet J, Schmidt B E, Alharbi A F, Légaré F, Blanchet V, Fabre B, Patchkovskii S, Smirnova O, Mairesse Y, Bhardwaj V R 2015 Nat. Phys. 11 654

    [7]

    Allaria E, Diviacco B, Callegari C, Finetti C, Mahieu B, Viefhaus J, Zangrando M, de Ninno G, Lambert G, Ferrari E, Buck J, Ilchen M, Vodungbo B, Mahne N, Svetina C, Spezzani C, Mitri S D, Penco G, Trovó M, Fawley W M, Rebernik P R, Gauthier D, Grazioli C, Coreno M, Ressel B, Kivimäki A, Mazza T, Glaser L, Scholz F, Seltmann J, Gessler P, Grnert J, de Fanis A, Meyer M, Knie A, Moeller S P, Raimondi L, Capotondi F, Pedersoli E, Plekan O, Danailov M B, Demidovich A, Nikolov I, Abrami A, Gautier J, Lning J, Zeitoun P, Giannessi L 2014 Phys. Rev. X 4 041040

    [8]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005 Phys. Rev. Lett. 94 243901

    [9]

    Bocoum M, Thévenet M, Böhle F, Beaurepaire B, Vernier A, Jullien A 2016 Phys. Rev. Lett. 116 185001

    [10]

    Lavocat-Dubuis X, Matte J P 2010 Phys. Plasmas 17 093105

    [11]

    Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李昆, 张杰, 余玮 2003 物理学报 52 1412]

    [12]

    Zhang Q J, Sheng Z M, Zhang J 2004 Acta Phys. Sin. 53 2180 (in Chinese)[张秋菊, 盛正明, 张杰 2004 物理学报 53 2180]

    [13]

    Cerchez M, Giesecke A L, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T 2013 Phys. Rev. Lett. 110 065003

    [14]

    Quéré F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004

    [15]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasma 1 745

    [16]

    Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 046404

    [17]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [18]

    Easter J H, Nees J A, Hou B X, Mordovanakis A, Mourou G, Thomas A G R, Krushelnick K 2013 New J. Phys. 15 025035

    [19]

    Rykovanov S, Geissler M, Meyer-Ter-Vehn J, Tsakiris G 2008 New J. Phys. 10 025025

    [20]

    Yeung M, Bierbach J, Eckner E, Rykovanov S, Kuschel S, Sävert A, Forster M, Rödel C, Paulus G G, Cousens S, Coughlan M, Dromey B, Zepf M 2015 Phys. Rev. Lett. 115 193903

    [21]

    Chen Z Y, Li X Y, Li B Y, Chen M, Liu F 2018 Opt. Express 26 4572

    [22]

    Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515

    [23]

    Gao J, Liu F, Ge X L, Deng Y Q, Fang Y, Wei W Q, Yang S, Yuan X H, Chen M, Sheng Z M, Zhang J 2017 Chin. Opt. Lett. 15 081902

    [24]

    Ge X L, Fang Y, Yang S, Wei W Q, Liu F, Yuan P, Ma J G, Zhao L, Yuan X H, Zhang J 2018 Chin. Opt. Lett. 16 013201

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀. 物理学报, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制. 物理学报, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光. 物理学报, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [7] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [8] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [9] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [10] 汪礼锋, 贺新奎, 滕浩, 运晨霞, 张伟, 魏志义. 5fs驱动激光脉冲的高次谐波选择性优化. 物理学报, 2014, 63(22): 224103. doi: 10.7498/aps.63.224103
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [13] 张春丽, 冯志波, 祁月盈, 车继馨. 任意偏振激光作用下二维模型H原子的谐波发射. 物理学报, 2011, 60(8): 083201. doi: 10.7498/aps.60.083201
    [14] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波. 物理学报, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [15] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [18] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [19] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [20] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
计量
  • 文章访问数:  6021
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-09-07
  • 刊出日期:  2018-11-05

/

返回文章
返回