搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹半导体激光光频梳研究进展

廖小瑜 曹俊诚 黎华

引用本文:
Citation:

太赫兹半导体激光光频梳研究进展

廖小瑜, 曹俊诚, 黎华

Research progress of terahertz semiconductor optical frequency combs

Liao Xiao-Yu, Cao Jun-Cheng, Li Hua
PDF
HTML
导出引用
  • 光频梳由一系列等间距、高稳定性的频率线组成. 由于具有超高频率稳定性和超低相位噪声, 光频梳在精密光谱测量、成像、通信等领域具有重要应用. 在太赫兹波段, 基于半导体的电抽运太赫兹量子级联激光器具有大功率输出、宽频率覆盖范围等特点, 是产生太赫兹光频梳的理想载体. 本文主要介绍基于太赫兹半导体量子级联激光器光频梳的研究进展, 详细列举了自由运行、主动稳频和被动稳频模式下产生光频梳的方法. 双光梳光谱可以克服传统太赫兹光谱仪需要机械扫描系统而难以实现实时光谱检测的难题, 是光频梳应用的主要方向. 在光频梳基础之上, 本文还介绍了采用两个太赫兹量子级联激光器产生双光梳的方法和应用.
    Optical frequency comb consists of a series of equally spaced and highly stable frequency lines. Due to the advantages of the ultra-high frequency stability and ultra-low phase noise, the optical frequency combs have important applications in high precision spectroscopy, imaging, communications, etc. In the terahertz frequency range, semiconductor-based electrically pumped terahertz quantum cascade lasers have the characteristics of high output power and wide frequency coverage, and are the ideal candidates for generating terahertz optical frequency combs. In this article, we first briefly introduce the research progress of the optical frequency comb in the communication and the mid-infrared bands. Then we mainly review the research progress of the optical frequency combs based on the terahertz semiconductor quantum cascade laser (QCL) operating in free-running, active frequency stabilization and passive frequency stabilization modes. In free running mode, the terahertz QCL frequency comb is mainly limited by the large group velocity dispersion which results in a small comb bandwidth. Therefore, the dispersion compensation is one of the important methods to stabilize the optical frequency comb and broaden the spectral bandwidth. At present, the active frequency stabilization mode is a relatively matured method to realize the optical frequency combs in terahertz QCLs. In this article, we also detail the methods and applications of terahertz QCL dual-comb operations, including on-chip dual-comb and dual-comb spectroscopy. Compared with the Fourier transform infrared spectroscopy and time domain spectroscopy, the terahertz dual-comb spectroscopy has advantages in fast data acquisition (real-time) and high spectral resolution. The emergence of the dual-comb technique not only verifies the concept of optical frequency combs, but also further promotes the applications of frequency combs.
      通信作者: 黎华, hua.li@mail.sim.ac.cn
    • 基金项目: 国家优秀青年科学基金(批准号:62022084)、国家自然科学基金(批准号: 61875220, 61575214, 61404150, 61405233, 61704181)、中国科学院“从0到1”原始创新项目(批准号: ZDBC-LY-JSC009)、国家重点研发计划(批准号:2017YFF0106302, 2017YFA0701005)、上海市优秀学术带头人(批准号:20XD1424700)和上海市青年拔尖人才开发计划资助的课题.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn
    • Funds: Project supported by the National Science Fund for Excellent Young Scholars of China (Grant No. 62022084), the National Natural Science Foundation of China (Grant Nos. 61875220, 61575214, 61404150, 61405233, 61704181), the “From 0 to 1” Innovation Program of Chinese Academy of Sciences, China (Grant No. ZDBC-LY-JSC009), the Major National Development Project of Scientific Instrument and Equipment, China (Grant Nos. 2017YFF0106302, 2017YFA0701005), the Shanghai Outstanding Academic Leaders Plan, China (Grant No. 20XD1424700), and the Shanghai Youth Top Talent Support Program, China.
    [1]

    Diddams S A 2010 J. Opt. Soc. Am. B 27 B51Google Scholar

    [2]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [3]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photon. 6 440Google Scholar

    [4]

    Füser H, Bieler M 2014 J. Infrared Millim. Terahertz Waves 35 585Google Scholar

    [5]

    Reichert J, Niering M, Holzwarth R, Weitz M, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 3232Google Scholar

    [6]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [7]

    Beha K, Cole D C, Del’Haye P, Coillet A, Diddams S A, Papp S B 2017 Optica 4 406Google Scholar

    [8]

    Kourogi M, Nakagawa K i, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar

    [9]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [10]

    Wang C, Zhang M, Yu M, Zhu R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar

    [11]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [12]

    Fischer C, W. Sigrist M 1970 Top. Appl. Phys. 99Google Scholar

    [13]

    Gubin M A, Kireev A N, Konyashchenko A V, Kryukov P G, Shelkovnikov A S, Tausenev A V, Tyurikov D A 2009 Appl. Phys. B 95 661Google Scholar

    [14]

    Adler F, Cossel K, J Thorpe M, Hartl I, Fermann M, Ye J 2009 Opt. Lett. 34 1330Google Scholar

    [15]

    Scalari G, Faist J, Picqué N 2019 Appl. Phys. Lett. 114 150401Google Scholar

    [16]

    Jun Y, Schnatz H, Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041Google Scholar

    [17]

    Wang Y, Soskind M G, Wang W, Wysocki G 2014 Appl. Phys. Lett. 104 031114Google Scholar

    [18]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38Google Scholar

    [19]

    Siegel P 2002 IEEE Trans. Microw. Theory Tech. 50 910Google Scholar

    [20]

    Ferguson B, Zhang X 2002 Nat. Mater. 1 26Google Scholar

    [21]

    Cao J 2003 Phys. Rev. Lett. 91 237401Google Scholar

    [22]

    Tonouchi M 2007 Nat. Photon. 1 97Google Scholar

    [23]

    Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J 2007 Appl. Phys. Lett. 91 131122Google Scholar

    [24]

    Carr G, Martin M, McKinney W, Jordan K, Neil G, Williams G 2002 Nature 420 153Google Scholar

    [25]

    Woolard D L, Brown R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722Google Scholar

    [26]

    Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [27]

    Kawase K, Ogawa Y, Yuuki W, Inoue H 2003 Opt. Express 11 2549Google Scholar

    [28]

    Chen J, Chen Y, Zhao H, Bastiaans G, Zhang X C 2007 Opt. Express 15 12060Google Scholar

    [29]

    Kawase K, Shibuya T, Hayashi S i, Suizu K 2010 C. R. Physique 11 510Google Scholar

    [30]

    Fischer B, Walther M, Jepsen P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [31]

    Siegel P 2004 IEEE Trans. Microw. Theory Tech. 52 2438Google Scholar

    [32]

    Castro-Camus E, Johnston M B 2008 Chem. Phys. Lett. 455 289Google Scholar

    [33]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2004 Electron. Lett. 40 124Google Scholar

    [34]

    Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H 2009 Electron. Lett. 45 952Google Scholar

    [35]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H 2011 Electron. Lett. 47 1002Google Scholar

    [36]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [37]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2007 J. Infrared Millim. Waves 27 531Google Scholar

    [38]

    Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S, Araki T 2006 Appl. Phys. Lett. 88 241104Google Scholar

    [39]

    Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J 2009 Laser Photon. Rev. 3 45Google Scholar

    [40]

    Belkin M A, Fan J A, Hormoz S, Capasso F, Khanna S P, Lachab M, Davies A G, Linfield E H 2008 Opt. Express 16 3242Google Scholar

    [41]

    Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2013 Appl. Phys. Lett. 103 171113Google Scholar

    [42]

    Danylov A, Erickson N, Light A, Waldman J 2015 Opt. Lett. 40 5090Google Scholar

    [43]

    Williams B S 2007 Nat. Photon. 1 517Google Scholar

    [44]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [45]

    Friedli P, Sigg H, Hinkov B, Hugi A, Riedi S, Beck M, Faist J 2013 Appl. Phys. Lett. 102 222104Google Scholar

    [46]

    Gmachl C, Sivco D, Colombelli R, Capasso F, Cho A 2002 Nature 415 883Google Scholar

    [47]

    Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, Faist J 2016 Optica 3 252Google Scholar

    [48]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272Google Scholar

    [49]

    Villares G, Faist J 2015 Opt. Express 23 1651Google Scholar

    [50]

    Zhou K, Li H, Wan W J, Li Z P, Liao X Y, Cao J C 2019 Appl. Phys. Lett. 114 191106Google Scholar

    [51]

    Li H, Cao J, T. Lu J 2008 J. Appl. Phys. 103 103113Google Scholar

    [52]

    Burghoff D, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2015 Opt. Express 23 1190Google Scholar

    [53]

    Cappelli F, Villares G, Riedi S, Faist J 2015 Optica 2 836Google Scholar

    [54]

    Wienold M, Schrottke L, Giehler M, Hey R, Anders W, Grahn H T 2010 Appl. Phys. Lett. 97 071113Google Scholar

    [55]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D Appl. Phys. 47 374008Google Scholar

    [56]

    Turčinková D, Scalari G, Castellano F, Amanti M I, Beck M, Faist J 2011 Appl. Phys. Lett. 99 191104Google Scholar

    [57]

    Rösch M, Beck M, Süess M J, Bachmann D, Unterrainer K, Faist J, Scalari G 2018 Nanophotonics 7 237Google Scholar

    [58]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nat. Photon. 9 42Google Scholar

    [59]

    Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124Google Scholar

    [60]

    Finneran I, Good J, Holland D, Carroll P, Allodi M, Blake G 2015 Phys. Rev. Lett. 114 163902Google Scholar

    [61]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462Google Scholar

    [62]

    Hillbrand J, Jouy P, Beck M, Faist J 2018 Opt. Lett. 43 1746Google Scholar

    [63]

    Yang Y, Burghoff D, Reno J, Hu Q 2017 Opt. Lett. 42 3888Google Scholar

    [64]

    Barbieri S, Gellie P, Santarelli G, Ding L, Maineult W, Sirtori C, Colombelli R, Beere H, Ritchie D 2010 Nat. Photon. 4 636Google Scholar

    [65]

    Gellie P, Barbieri S, Lampin J-F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799Google Scholar

    [66]

    Faist J, Beck M, Aellen T, Gini E 2001 Appl. Phys. Lett. 78 147Google Scholar

    [67]

    Amanti M I, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E 2009 New J. Phys. 11 125022Google Scholar

    [68]

    Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T 2011 J. Appl. Phys. 109 073112Google Scholar

    [69]

    Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H, Davies A G 2011 Nat. Photon. 5 306Google Scholar

    [70]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [71]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photon. Rev. 11 1700013Google Scholar

    [72]

    Wienold M, Röben B, Schrottke L, Grahn H T 2014 Opt. Express 22 30410Google Scholar

    [73]

    Coldren L A, Miller B I, Iga K, Rentschler J A 1981 Appl. Phys. Lett. 38 315Google Scholar

    [74]

    Tsang W T, Olsson N A, Logan R A 1983 Electron. Lett. 19 488Google Scholar

    [75]

    Coldren L, Koch T 1984 IEEE J. Quantum Electron. 20 659Google Scholar

    [76]

    Ebeling K J, Coldren L A, Miller B I, Rentschler J A 1983 Appl. Phys. Lett. 42 6Google Scholar

    [77]

    Li Z, Li H, Wan W, Zhou K, Cao J, Chang G, Xu G 2018 Opt. Express 26 32675Google Scholar

    [78]

    Oustinov D, Jukam N, Rungsawang R, Madeo J, Barbieri S, Filloux P, Sirtori C, Marcadet X, Tignon J, Dhillon S 2010 Nat. Commun. 1 69Google Scholar

    [79]

    Udem T, Reichert J, Holzwarth R, Diddams S, Jones D, Ye J, Cundiff S, Hansch T, Hall J 2007 The Hydrogen Atom (Berlin Heidelberg: Springer-Verlag) p125

    [80]

    Auston D H, Cheung K P 1985 J. Opt. Soc. Am. B 2 606Google Scholar

    [81]

    Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J 2015 ACS Photonics 2 1559Google Scholar

    [82]

    Li H, Yan M, Wan W, Zhou T, Zhou K, Li Z, Cao J, Yu Q, Zhang K, Li M, Nan J, He B, Zeng H 2019 Adv. Sci. 6 1900460Google Scholar

    [83]

    Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar

    [84]

    Hu G, Mizuguchi T, Oe R, Nitta K, Zhao X, Minamikawa T, Li T, Zheng Z, Yasui T 2018 Sci. Rep. 8 11155Google Scholar

    [85]

    Jerez B, Walla F, Betancur A, Martin-Mateos P, de Dios C, Acedo P 2019 Opt. Lett. 44 415Google Scholar

    [86]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hänsch T W, Picqué N 2010 Nat. Photon. 4 55Google Scholar

    [87]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [88]

    Li Z, Wan W, Zhou K, Liao X, Yang S, Fu Z, Cao J C, Li H 2019 Phys. Rev. Appl. 12 044068Google Scholar

    [89]

    Yang Y, Burghoff D, Hayton D J, Gao J R, Reno J L, Hu Q 2016 Optica 3 499Google Scholar

    [90]

    Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il’in K S, Siegel M, Hübers H W 2008 Appl. Phys. Lett. 93 141108Google Scholar

    [91]

    Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar

    [92]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2019 Optica 6 766Google Scholar

  • 图 1  (a) 光频梳的时域和频域光谱[3]; (b)自参考方法测量光频梳的偏移频率[2]

    Fig. 1.  (a) Time domain and frequency domain spectra of the optical frequency comb[3]; (b) measuring the offset frequency of the optical comb using a self-reference method[2].

    图 2  (a)铌酸锂微环谐振腔的显微图; (b) EO梳的输出光谱, 带宽超过80 nm, 频梳线超过900条, 左侧插图为虚线框的放大, 右侧插图为在不同调制指数β的情况下测量的透射光谱[9]

    Fig. 2.  (a) Micrograph of a fabricated lithium niobate microring resonator. (b) Output spectrum of the EO comb generated from the microring resonator, the bandwidth exceeding 80 nm and more than 900 comb lines. The left inset shows a magnified view of the dotted. The right inset shows the measured transmission spectrum for several different modulation indices $\beta $[9].

    图 3  (a)两个间隔为$\delta $的初始频率v1v2; (b)四波混频过程后的频率分布图, 绿色曲线为产生的新的频率边带, 频率分别为${v_1} - \delta $${v_2} + \delta $[44]

    Fig. 3.  (a) Initial mode frequencies, ${v_1}$ and ${v_2}$, separated by $\delta $; (b) final frequencies resulting from four-wave mixing, with the two sidebands at ${v_1} - \delta $ and ${v_2} + \delta $ shown in green[44].

    图 4  (a)不同脊条宽度下器件的钳制增益和总损耗与频率的关系; (b)不同脊条宽度下的总GVD, 其中4.05—4.35 THz的阴影区域代表THz QCL的激射区域[50]

    Fig. 4.  (a) Calculated clamped gain and total loss as function of frequency for lasers with different ridge widths; (b) total GVDs at different ridge widths. The shaded area from 4.05 to 4.35 THz represents the lasing range of the THz QCL[50].

    图 5  (a)计算器件的横截面增益gc, 蓝色曲线为有源区单独每一部分的增益曲线, 绿色曲线为有源区总的增益曲线, 插图为激光器有源区的设计模型; (b)激光器的发射光谱, 跨越了一个倍频程[58]

    Fig. 5.  (a) Calculated gain cross-section gc. Blue curves: individual designs. Green curve: total active region. Inset: design of the laser active region. (b) Octave-spanning spectrum of laser[58].

    图 6  (a)啁啾波纹型结构, 红色为较长波长的波, 蓝色为较短波长的波; (b)温度为50 K时, THz QCL梳的光谱, 黄线表示为水汽吸收[61]; (c)两段式器件结构示意图, 直流部分为蓝色, FP的一部分为红色; (d)每一段结构的电流-电压特性, 粉色阴影区域表示激光器的动态范围, 插图为实际设备空气间隙的SEM照片[63]

    Fig. 6.  (a) Schematic of the chirped corrugation. The red wave has longer wavelength, while the blue wave has shorter wavelength. (b) Spectrum of the THz QCL comb at a temperature of 50 K. Atmospheric absorption is shown in yellow[61]. (c) Schematic of the device in a two-section configuration. The DC section is shown in blue; part of the FP section is in red. (d) Current-voltage characteristics for each section. The pink-shaded area indicates the entire dynamic range of lasing. The inset shows the SEM photo for the air gap in the real device[63].

    图 7  THz QCL主动锁模实验装置图, THz QCL发射频率为2.5 THz, 重复频率为13.3 GHz[69]

    Fig. 7.  Experimental setup of THz QCL active mode-locking. The emitting frequency of THz QCL is 2.5 THz and its repetition frequency is 13.3 GHz[69].

    图 8  (a), (b)对THz QCL同时进行注入和锁相的情况下, 改变RF功率和电流得到的拍频信号图; (c), (d)对应条件下在时域内测得的波形, 图中的黑点为实验值, 红色曲线为理论计算值, 其中假设了所有模式具有等相位[69]

    Fig. 8.  (a), (b) In the case of simultaneous injection and phase-locking of THz QCL, the beat-note signal diagram obtained by changing the RF power and the current. (c), (d) The waveforms are measured in the time domain under the corresponding conditions. The black dots in the figure are experimental values. The red curves are the result of theoretical calculations by assuming that all modes have equal phase[69].

    图 9  (a) RF调制THz QCL实验装置图; (b)不同调制电流下的THz发射光谱图, 蓝色曲线为从HITRAN数据库提取3.9—4.2 THz范围内的水吸收线[70]

    Fig. 9.  (a) Experimental setup of RF modulation to THz QCL; (b) THz emission spectra under different modulation current. The water absorption lines in the frequency range from 3.9 to 4.4 THz extracted from the HITRAN database[70]

    图 10  (a)通过注入相干THz脉冲实现QCL载波相位固定的实验装置; (b)在不同输入THz脉冲幅度条件下测量的QCL输出光场, THz脉冲幅度正比于天线电压, 分别为1 V (绿色曲线)、0.25 V (蓝色曲线)和0.06 V (灰色曲线)[78]

    Fig. 10.  (a) Experimental setup for achieving the carrier phase fixed in QCL by injecting coherent THz pulse. (b) Measured fields of the QCL output for various input THz pulse amplitudes. The THz pulse amplitude is proportional to the antenna voltage with 1 V (green curve), 0.25 V (blue curve) and 0.06 V (grey curve)[78].

    图 11  (a)石墨烯耦合QCL结构示意图, 插图为THz波在复合腔中的传播示意图; (b)具有GiSAM与不具有GiSAM的双光梳和线宽[82]

    Fig. 11.  (a) Schematic of the graphene-coupled QCL. Inset: Illustration of the terahertz light propagation in the compound cavity. (b) Dual-comb and linewidth with and without GiSAM[82].

    图 12  (a)片上双光梳的实验原理图; (b)双光梳光谱, 其中蓝色曲线为光谱图, 插图为放大的两相邻梳齿的峰值, 红色曲线为从本地振荡梳中提取出的多外差光谱[87]; (c)双RF注入下的片上双光梳结构示意图, 插图为实际双光梳装置的光学照片; (d)自由运行模式和RF注入模式下的下转换双光梳谱[88]

    Fig. 12.  (a) Schematics of the dual-comb on chip. (b) Optical spectrum (blue curve). The inset shows that the modes consist of two peaks corresponding to the two combs. In red is the corresponding multi-heterodyne spectrum extracted from the current bias of the LO laser[87]. (c) Schematics of the on-chip dual-comb system under double injection. The inset shows an optical photo of the mounted dual-comb device. (d) The down-converted dual-comb spectra in free-running mode and under a microwave double injection[88].

    图 13  (a)分离式双光梳实验装置图, 插图显示了铜支架上的两个通过硅透镜耦合的频率梳; (b)在HEB上得到的多外差信号光谱[89]; (c)紧凑型双光梳实验模拟图, 插图为实际实验装置[91]

    Fig. 13.  (a) Experimental setup for separating dual-comb system. Inset shows real laser frequency combs on the copper mount, both of which are silicon lens-coupled. (b) Multiheterodyne signal obtained from the HEB[89]. (c) Experimental simulation diagram for compact dual-comb system. The illustration shows the actual experimental device[91].

    图 14  (a)双光梳高光谱成像系统; (b)在光路中放入(红色)或者不放入(蓝色)硅片获取的拍频信号光谱; (c)根据(a)计算出的透射光谱; (d)在零水汽(蓝色)和相对湿度为23% (红色)下获取的拍频信号光谱; (e)根据(d)计算的透射光谱, 蓝色曲线为从2016 HITRAN数据库获得的参数[92]

    Fig. 14.  (a) Dual-comb hyperspectral imaging system. (b) Beat note spectra acquired with (red) or without (blue) a silicon wafer inserted in the beam path. (c) Transmission spectra calculated from the beat note spectra in (b). (d) Beat note spectra acquired with zero gas (blue) and atmospheric water vapor at 23% relative humidity (red). (e) Transmission spectra calculated from (d); the blue curve is extracted from the HITRAN 2016 database[92].

  • [1]

    Diddams S A 2010 J. Opt. Soc. Am. B 27 B51Google Scholar

    [2]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [3]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photon. 6 440Google Scholar

    [4]

    Füser H, Bieler M 2014 J. Infrared Millim. Terahertz Waves 35 585Google Scholar

    [5]

    Reichert J, Niering M, Holzwarth R, Weitz M, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 3232Google Scholar

    [6]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [7]

    Beha K, Cole D C, Del’Haye P, Coillet A, Diddams S A, Papp S B 2017 Optica 4 406Google Scholar

    [8]

    Kourogi M, Nakagawa K i, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar

    [9]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [10]

    Wang C, Zhang M, Yu M, Zhu R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar

    [11]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [12]

    Fischer C, W. Sigrist M 1970 Top. Appl. Phys. 99Google Scholar

    [13]

    Gubin M A, Kireev A N, Konyashchenko A V, Kryukov P G, Shelkovnikov A S, Tausenev A V, Tyurikov D A 2009 Appl. Phys. B 95 661Google Scholar

    [14]

    Adler F, Cossel K, J Thorpe M, Hartl I, Fermann M, Ye J 2009 Opt. Lett. 34 1330Google Scholar

    [15]

    Scalari G, Faist J, Picqué N 2019 Appl. Phys. Lett. 114 150401Google Scholar

    [16]

    Jun Y, Schnatz H, Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041Google Scholar

    [17]

    Wang Y, Soskind M G, Wang W, Wysocki G 2014 Appl. Phys. Lett. 104 031114Google Scholar

    [18]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38Google Scholar

    [19]

    Siegel P 2002 IEEE Trans. Microw. Theory Tech. 50 910Google Scholar

    [20]

    Ferguson B, Zhang X 2002 Nat. Mater. 1 26Google Scholar

    [21]

    Cao J 2003 Phys. Rev. Lett. 91 237401Google Scholar

    [22]

    Tonouchi M 2007 Nat. Photon. 1 97Google Scholar

    [23]

    Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J 2007 Appl. Phys. Lett. 91 131122Google Scholar

    [24]

    Carr G, Martin M, McKinney W, Jordan K, Neil G, Williams G 2002 Nature 420 153Google Scholar

    [25]

    Woolard D L, Brown R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722Google Scholar

    [26]

    Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [27]

    Kawase K, Ogawa Y, Yuuki W, Inoue H 2003 Opt. Express 11 2549Google Scholar

    [28]

    Chen J, Chen Y, Zhao H, Bastiaans G, Zhang X C 2007 Opt. Express 15 12060Google Scholar

    [29]

    Kawase K, Shibuya T, Hayashi S i, Suizu K 2010 C. R. Physique 11 510Google Scholar

    [30]

    Fischer B, Walther M, Jepsen P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [31]

    Siegel P 2004 IEEE Trans. Microw. Theory Tech. 52 2438Google Scholar

    [32]

    Castro-Camus E, Johnston M B 2008 Chem. Phys. Lett. 455 289Google Scholar

    [33]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2004 Electron. Lett. 40 124Google Scholar

    [34]

    Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H 2009 Electron. Lett. 45 952Google Scholar

    [35]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H 2011 Electron. Lett. 47 1002Google Scholar

    [36]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [37]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2007 J. Infrared Millim. Waves 27 531Google Scholar

    [38]

    Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S, Araki T 2006 Appl. Phys. Lett. 88 241104Google Scholar

    [39]

    Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J 2009 Laser Photon. Rev. 3 45Google Scholar

    [40]

    Belkin M A, Fan J A, Hormoz S, Capasso F, Khanna S P, Lachab M, Davies A G, Linfield E H 2008 Opt. Express 16 3242Google Scholar

    [41]

    Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2013 Appl. Phys. Lett. 103 171113Google Scholar

    [42]

    Danylov A, Erickson N, Light A, Waldman J 2015 Opt. Lett. 40 5090Google Scholar

    [43]

    Williams B S 2007 Nat. Photon. 1 517Google Scholar

    [44]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [45]

    Friedli P, Sigg H, Hinkov B, Hugi A, Riedi S, Beck M, Faist J 2013 Appl. Phys. Lett. 102 222104Google Scholar

    [46]

    Gmachl C, Sivco D, Colombelli R, Capasso F, Cho A 2002 Nature 415 883Google Scholar

    [47]

    Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, Faist J 2016 Optica 3 252Google Scholar

    [48]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272Google Scholar

    [49]

    Villares G, Faist J 2015 Opt. Express 23 1651Google Scholar

    [50]

    Zhou K, Li H, Wan W J, Li Z P, Liao X Y, Cao J C 2019 Appl. Phys. Lett. 114 191106Google Scholar

    [51]

    Li H, Cao J, T. Lu J 2008 J. Appl. Phys. 103 103113Google Scholar

    [52]

    Burghoff D, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2015 Opt. Express 23 1190Google Scholar

    [53]

    Cappelli F, Villares G, Riedi S, Faist J 2015 Optica 2 836Google Scholar

    [54]

    Wienold M, Schrottke L, Giehler M, Hey R, Anders W, Grahn H T 2010 Appl. Phys. Lett. 97 071113Google Scholar

    [55]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D Appl. Phys. 47 374008Google Scholar

    [56]

    Turčinková D, Scalari G, Castellano F, Amanti M I, Beck M, Faist J 2011 Appl. Phys. Lett. 99 191104Google Scholar

    [57]

    Rösch M, Beck M, Süess M J, Bachmann D, Unterrainer K, Faist J, Scalari G 2018 Nanophotonics 7 237Google Scholar

    [58]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nat. Photon. 9 42Google Scholar

    [59]

    Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124Google Scholar

    [60]

    Finneran I, Good J, Holland D, Carroll P, Allodi M, Blake G 2015 Phys. Rev. Lett. 114 163902Google Scholar

    [61]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462Google Scholar

    [62]

    Hillbrand J, Jouy P, Beck M, Faist J 2018 Opt. Lett. 43 1746Google Scholar

    [63]

    Yang Y, Burghoff D, Reno J, Hu Q 2017 Opt. Lett. 42 3888Google Scholar

    [64]

    Barbieri S, Gellie P, Santarelli G, Ding L, Maineult W, Sirtori C, Colombelli R, Beere H, Ritchie D 2010 Nat. Photon. 4 636Google Scholar

    [65]

    Gellie P, Barbieri S, Lampin J-F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799Google Scholar

    [66]

    Faist J, Beck M, Aellen T, Gini E 2001 Appl. Phys. Lett. 78 147Google Scholar

    [67]

    Amanti M I, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E 2009 New J. Phys. 11 125022Google Scholar

    [68]

    Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T 2011 J. Appl. Phys. 109 073112Google Scholar

    [69]

    Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H, Davies A G 2011 Nat. Photon. 5 306Google Scholar

    [70]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [71]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photon. Rev. 11 1700013Google Scholar

    [72]

    Wienold M, Röben B, Schrottke L, Grahn H T 2014 Opt. Express 22 30410Google Scholar

    [73]

    Coldren L A, Miller B I, Iga K, Rentschler J A 1981 Appl. Phys. Lett. 38 315Google Scholar

    [74]

    Tsang W T, Olsson N A, Logan R A 1983 Electron. Lett. 19 488Google Scholar

    [75]

    Coldren L, Koch T 1984 IEEE J. Quantum Electron. 20 659Google Scholar

    [76]

    Ebeling K J, Coldren L A, Miller B I, Rentschler J A 1983 Appl. Phys. Lett. 42 6Google Scholar

    [77]

    Li Z, Li H, Wan W, Zhou K, Cao J, Chang G, Xu G 2018 Opt. Express 26 32675Google Scholar

    [78]

    Oustinov D, Jukam N, Rungsawang R, Madeo J, Barbieri S, Filloux P, Sirtori C, Marcadet X, Tignon J, Dhillon S 2010 Nat. Commun. 1 69Google Scholar

    [79]

    Udem T, Reichert J, Holzwarth R, Diddams S, Jones D, Ye J, Cundiff S, Hansch T, Hall J 2007 The Hydrogen Atom (Berlin Heidelberg: Springer-Verlag) p125

    [80]

    Auston D H, Cheung K P 1985 J. Opt. Soc. Am. B 2 606Google Scholar

    [81]

    Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J 2015 ACS Photonics 2 1559Google Scholar

    [82]

    Li H, Yan M, Wan W, Zhou T, Zhou K, Li Z, Cao J, Yu Q, Zhang K, Li M, Nan J, He B, Zeng H 2019 Adv. Sci. 6 1900460Google Scholar

    [83]

    Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar

    [84]

    Hu G, Mizuguchi T, Oe R, Nitta K, Zhao X, Minamikawa T, Li T, Zheng Z, Yasui T 2018 Sci. Rep. 8 11155Google Scholar

    [85]

    Jerez B, Walla F, Betancur A, Martin-Mateos P, de Dios C, Acedo P 2019 Opt. Lett. 44 415Google Scholar

    [86]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hänsch T W, Picqué N 2010 Nat. Photon. 4 55Google Scholar

    [87]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [88]

    Li Z, Wan W, Zhou K, Liao X, Yang S, Fu Z, Cao J C, Li H 2019 Phys. Rev. Appl. 12 044068Google Scholar

    [89]

    Yang Y, Burghoff D, Hayton D J, Gao J R, Reno J L, Hu Q 2016 Optica 3 499Google Scholar

    [90]

    Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il’in K S, Siegel M, Hübers H W 2008 Appl. Phys. Lett. 93 141108Google Scholar

    [91]

    Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar

    [92]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2019 Optica 6 766Google Scholar

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [4] 冯伟, 韦舒婷, 曹俊诚. 6G技术发展愿景与太赫兹通信. 物理学报, 2021, 70(24): 244303. doi: 10.7498/aps.70.20211729
    [5] 张瑞雪, 李洪国, 李宗国. 基于光场一阶关联的时域成像. 物理学报, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [8] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [9] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究. 物理学报, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [10] 高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏. 用于互组跃迁谱测量的窄线宽激光系统. 物理学报, 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [11] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统. 物理学报, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [12] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [13] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [14] 张继涛, 吴学健, 李岩, 尉昊赟. 利用光频梳提高台阶高度测量准确度的方法. 物理学报, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [15] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [16] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [17] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [18] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [20] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响. 物理学报, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
计量
  • 文章访问数:  8892
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-23
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-09-20

/

返回文章
返回