搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三元非富勒烯体系的高效有机太阳能电池

周朋超 张卫东 顾嘉陆 陈卉敏 胡腾达 蒲华燕 兰伟霞 魏斌

引用本文:
Citation:

基于三元非富勒烯体系的高效有机太阳能电池

周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌

Dual non-fullerene acceptors based high efficiency ternary organic solar cells

Zhou Peng-Chao, Zhang Wei-Dong, Gu Jia-Lu, Chen Hui-Min, Hu Teng-Da, Pu Hua-Yan, Lan Wei-Xia, Wei Bin
PDF
HTML
导出引用
  • 有机材料的“窄吸收”特性制约了有机太阳能电池(OPVs)性能的进一步突破, 二元体异质结薄膜难以实现对太阳能的有效宽光谱利用. 三元OPVs在二元体系中引入吸收互补的第三组分, 能够增强器件光吸收, 实现光电转化效率的大幅提升. 近年来, 非富勒烯受体材料的飞速进展, 多次刷新有机太阳能电池最高效率记录, 丰富并扩展了三元受体材料的选择范围. 本文以非富勒烯受体材料Y6作为第三组分材料, 高效率非富勒烯太阳能电池PBDB-T-2F: IT-4F作为基础二元器件, 研究并分析了以双非富勒烯材料为受体的三元有机太阳能电池工作机理. 通过光电特性分析, 发现Y6的引入不仅能够增强器件近红外区域的光吸收能力, 而且能够有效抑制双分子复合, 提高电荷取出率, 从而提高器件能量转换效率. 通过调节Y6在三元体系中的质量百分比, 在Y6占比为20 wt%时, 器件实现最高的能量转换效率12.48%, 相比于基础二元器件(10.59%)实现了17.85%的性能提升.
    Organic photovoltaics (OPVs) have been considered as one of the preliminary candidates for the third-generation solar cells due to their particularly advantages, such as light-weight, low cost, solution processability and mechanical flexibility. In recent years, the power conversion efficiency (PCE) of OPVs has achieved remarkable progress with the development of non-fullerene acceptors (NFAs), which exhibit stronger capability of light absorption and stability than the fullerene acceptors. However, the narrow absorption properties of organic materials still restrict the further breakthrough of the performance of OPVs. It is difficult for the binary heterojunction films to realize the effective wide spectrum utilization of solar energy. Ternary strategy, which consists of one donor and two acceptors or two donors and one acceptor in a bulk-heterojunction, has proven to be an effective and facile way to enhance performances of OPVs. The emergence of new NFAs such as ITIC, IT-4F, Y6 etc. greatly increases the selectivity of acceptors in a ternary system. It is necessary to investigate the compatibility of latest NFA materials and corresponding ternary device performance. In this article, we report a new ternary OPV system with dual NFAs and a polymer donor. The excellent NFA material (Y6), which was first reported in 2019, is used as the third component. Different concentrations of Y6 are introduced into the binary system based on PBDB-T-2F:IT-4F. The compatibility between materials and device performances are investigated through absorption capability of blend films, AFM, water contact angle, GISAXS, and corresponding electrical properties of devices. The 12.48% PCE is achieved from ternary OPVs with PBDB-T:IT-4F as the active layers containing 20wt% Y6 in acceptors, resulting from the enhanced Jsc of 22.09 mA/cm2, Voc of 0.83 V and FF of 68.45%. The origin of the improvement of the ternary OPVs is summarized below. Firstly, an apparently complementary absorption spectrum is obtained through the introduction of Y6, which has a stronger photo harvesting capability in the spectral range from 750 to 950 nm than IT-4F, and higher short current density (Jsc) is observed in the ternary devices than in the binary device. Secondly, a rougher surface of the active layer is observed by increasing the Y6 concentration, which may result in an inferior exciton dissociation and charge transport process, the existence of larger-scaled crystal is proved by the GISAXS technology. Thirdly, the introduced Y6 can help to suppress the bimolecular recombination, which is in favor of the incremental device performance. Approximately 17.85% PCE improvement is obtained in comparison with PBDB-T-2F:IT-4F based binary OPVs.
      通信作者: 兰伟霞, weixia_lan@shu.edu.cn
    • 基金项目: 国家自然科学基金重大研究计划(批准号: 91748116)和国家自然科学基金青年科学基金项目(批准号:62005152)资助的课题
      Corresponding author: Lan Wei-Xia, weixia_lan@shu.edu.cn
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91748116) and the National Natural Science Foundation of China (Grant No. 62005152)
    [1]

    Xie J, Wang X, Wang S, Ling Z, Lian H, Liu N, Liao Y, Yang X, Qu W, Peng Y, Lan W, Wei B 2019 Org. Electron. 75 105381Google Scholar

    [2]

    Sekine C, Tsubata Y, Yamada T, Kitano M, Doi S 2014 Sci. Tech. adv. Mat. 15 1468Google Scholar

    [3]

    Xu X P, Zhang G J, Li Y, Peng Q 2019 Chin. Chem. Lett. 30 809Google Scholar

    [4]

    黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 26Google Scholar

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 26Google Scholar

    [5]

    Garcia A, Welch G C, Ratcliff E L, Ginley D S, Bazan G C, Olson D C 2012 Adv. Mater. 24 5368Google Scholar

    [6]

    Carle J E, Krebs F C 2013 Sol. Energy Mater. Sol. Cells 119 309Google Scholar

    [7]

    Fu H T, Wang Z H, Sun Y M 2019 Angew. Chem. Int. EDIT 58 4442Google Scholar

    [8]

    Zhao W, Qian D, Zhang S, Li S, Inganas O, Gao F, Hou J 2016 Adv. Mater. 28 4734Google Scholar

    [9]

    Liang Q, Han J, Song C, Yu X, Smilgies D-M, Zhao K, Liu J, Han Y 2018 J. Mater. Chem. A 6 15610Google Scholar

    [10]

    Fan Q P, Su W Y, Wang Y, Guo B, Jiang Y F, Guo X, Liu F, Russell T P, Zhang M J, Li Y F 2018 Sci. China. Chem. 61 531Google Scholar

    [11]

    Zheng Z, Hu Q, Zhang S, Zhang D, Wang J, Xie S, Wang R, Qin Y, Li W, Hong L, Liang N, Liu F, Zhang Y, Wei Z, Tang Z, Russell T P, Hou J, Zhou H 2018 Adv. Mater. 30 1801801Google Scholar

    [12]

    Zhao W C, Li S S, Yao H F, Zhang S Q, Zhang Y, Yang B, Hou J H 2017 J. Am. Chem. Soc. 139 7148Google Scholar

    [13]

    Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1140Google Scholar

    [14]

    王文静, 李冲, 张毛毛, 高琨 2019 物理学报 68 238Google Scholar

    Wang W J, Li C, Zhang M M, Gao K 2019 Acta Phys. Sin. 68 238Google Scholar

    [15]

    Lin Y B, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X P, Yarali E, Seitkhan A, Bakr O M, El-Labban A, Schwingenschlogl U, Tung V, McCulloch I, Laquai F, Anthopoulos T D 2019 Adv. Mater. 31 1902965Google Scholar

    [16]

    Yan T T, Song W, Huang J M, Peng R X, Huang L K, Ge Z Y 2019 Adv. Mater. 31 1902210Google Scholar

    [17]

    Ratcliff E L, Zacher B, Armstrong N R 2011 J. Phys. Chem. Lett. 2 1337Google Scholar

    [18]

    Wang Z, Wang Z, Wang Z, Zhao M, Zhou Y, Zhao B, Miao Y, Liu P, Hao Y, Wang H, Xu B, Wu Y, Yin S 2019 2D Mater. 6 045017Google Scholar

    [19]

    Wang Z, Zhang R, Zhao M, Wang Z, Wei B, Zhang X, Feng S, Cao H, Liu P, Hao Y, Wang H, Xu B, Pennycook S J, Guo J 2018 J. Mater. Chem. A 6 23773Google Scholar

    [20]

    金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟 2016 物理学报 65 028801Google Scholar

    Jin S Q, Xu Z, Zhao S L, Zhao J, Li Y, Deng L J 2016 Acta Phys. Sin. 65 028801Google Scholar

    [21]

    许中华, 陈卫兵, 叶玮琼, 杨伟丰 2014 物理学报 63 218801Google Scholar

    Xu Z H, Chen W B, Ye W Q, Yang W F 2014 Acta Phys. Sin. 63 218801Google Scholar

    [22]

    Xu L X, Li C, Hao X T, Gao K 2019 Phys. Lett. A 383 126001Google Scholar

    [23]

    Xu X P, Bi Z Z, Ma W, Wang Z S, Choy W C H, Wu W L, Zhang G J, Li Y, Peng Q 2017 Adv. Mater. 29 1704271Google Scholar

    [24]

    Jiang W G, Yu R N, Liu Z Y, Peng R X, Mi D B, Hong L, Wei Q, Hou J H, Kuang Y B, Ge Z Y 2018 Adv. Mater. 30 1703005Google Scholar

    [25]

    Lv R Z, Chen D, Liao X F, Chen L, Chen Y W 2019 Adv. Funct. Mater. 29 1805872Google Scholar

    [26]

    An Q S, Ma X L, Gao J H, Zhang F J 2019 Sci. Bull. 64 504Google Scholar

    [27]

    Chen M, Liu D, Li W, Gurney R S, Li D, Cai J, Spooner E L K, Kilbride R C, McGettrick J D, Watson T M, Li Z, Jones R A L, Lidzey D G, Wang T 2019 ACS Appl. Mater. Interfaces 11 26194Google Scholar

    [28]

    Street R A, Davies D, Khlyabich P P, Burkhart B, Thompson B C 2013 J. Am. Chem. Soc. 135 986Google Scholar

    [29]

    Bi P, Xiao T, Yang X, Niu M, Wen Z, Zhang K, Qin W, So S K, Lu G, Hao X, Liu H 2018 Nano Energy 46 81Google Scholar

  • 图 1  (a) PBDB-T-2F、IT-4F、Y6薄膜吸收谱及不同Y6质量占比下PBDB-T-2F:IT-4F:Y6 (xwt%) 三元体系薄膜的(b)吸收光谱图和(c)光致发光光谱

    Fig. 1.  (a) Absorption spectra of PBDB-T-2F, IT-4Fand Y6. (b) Absorption spectra and (c) photoluminance spectra of blended films with different concentrations of Y6.

    图 2  活性层AFM图像, 其中Y6质量占比分别为 (a) 0, (b) 10%, (c) 20%和(d) 30%

    Fig. 2.  AFM images measured for active layer with different concentrations of Y6 (a) 0%, (b) 10%, (c) 20%, and (d) 30%.

    图 3  各组分薄膜水和乙二醇液滴接触角及对应表面自由能大小, (a) PM6, (b) Y6, (c) IT-4F

    Fig. 3.  Contact angles and corresponding surface free energies of (a) PM6, (b) Y6, (c) IT-4F.

    图 4  活性层薄膜水接触角测试, 其中Y6质量占比分别 (a) 0, (b) 10%, (c) 20%和(d) 30%

    Fig. 4.  Water contact angle photographs measured for active layer with different concentrations of Y6 (a) 0%, (b) 10%, (c) 20%, and (d) 30%.

    图 5  (a)器件结构图; (b) OPVs器件内每一层独立能级图

    Fig. 5.  (a) Schematic illustration of the device configuration, (b) energy diagram of individual layer in OPVs.

    图 6  OPVs器件的J-V曲线图

    Fig. 6.  J-V curves of OPVs devices.

    图 7  各器件对应EQE曲线

    Fig. 7.  EQE curves of OPVs device.

    图 8  各器件对应 (a)光生电流密度与有效电压以及(b)对应的激子解离率与有效电压曲线(T = 300 K)

    Fig. 8.  (a) The photcurrent density (Jph) versus the effective voltage (Veff) and corresponding (b) exciton dissociation probility (P(E, T)) versus Veff of OPVs devices (T = 300 K).

    图 9  器件A—D对应的 (a) Jsc随入射光强的变化曲线, (b) Voc随入射光强的变化曲线

    Fig. 9.  (a) Jsc and (b) Voc as function of incident light intensity for the devices A, B, C, and D.

    图 10  (a)−(d)掺入不同质量占比的Y6后三元混合薄膜二维GISAXS图像和(e)相应的面内方向的一维曲线

    Fig. 10.  (a)−(d) GISAXS images of blended ternary films with different concentration of Y6, and (e) corresponding in-plane profile.

    表 1  各OPVs器件性能表

    Table 1.  Photovoltaic parameters of different devices.

    DeviceVoc/VJsc/(mA·cm–2)FF/%PCE/%
    Device A0.8220.4965.2210.59
    Device B0.8220.7665.2111.05
    Device C0.8322.0968.4512.48
    Device D0.8221.6366.4311.82
    下载: 导出CSV
  • [1]

    Xie J, Wang X, Wang S, Ling Z, Lian H, Liu N, Liao Y, Yang X, Qu W, Peng Y, Lan W, Wei B 2019 Org. Electron. 75 105381Google Scholar

    [2]

    Sekine C, Tsubata Y, Yamada T, Kitano M, Doi S 2014 Sci. Tech. adv. Mat. 15 1468Google Scholar

    [3]

    Xu X P, Zhang G J, Li Y, Peng Q 2019 Chin. Chem. Lett. 30 809Google Scholar

    [4]

    黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 26Google Scholar

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 26Google Scholar

    [5]

    Garcia A, Welch G C, Ratcliff E L, Ginley D S, Bazan G C, Olson D C 2012 Adv. Mater. 24 5368Google Scholar

    [6]

    Carle J E, Krebs F C 2013 Sol. Energy Mater. Sol. Cells 119 309Google Scholar

    [7]

    Fu H T, Wang Z H, Sun Y M 2019 Angew. Chem. Int. EDIT 58 4442Google Scholar

    [8]

    Zhao W, Qian D, Zhang S, Li S, Inganas O, Gao F, Hou J 2016 Adv. Mater. 28 4734Google Scholar

    [9]

    Liang Q, Han J, Song C, Yu X, Smilgies D-M, Zhao K, Liu J, Han Y 2018 J. Mater. Chem. A 6 15610Google Scholar

    [10]

    Fan Q P, Su W Y, Wang Y, Guo B, Jiang Y F, Guo X, Liu F, Russell T P, Zhang M J, Li Y F 2018 Sci. China. Chem. 61 531Google Scholar

    [11]

    Zheng Z, Hu Q, Zhang S, Zhang D, Wang J, Xie S, Wang R, Qin Y, Li W, Hong L, Liang N, Liu F, Zhang Y, Wei Z, Tang Z, Russell T P, Hou J, Zhou H 2018 Adv. Mater. 30 1801801Google Scholar

    [12]

    Zhao W C, Li S S, Yao H F, Zhang S Q, Zhang Y, Yang B, Hou J H 2017 J. Am. Chem. Soc. 139 7148Google Scholar

    [13]

    Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1140Google Scholar

    [14]

    王文静, 李冲, 张毛毛, 高琨 2019 物理学报 68 238Google Scholar

    Wang W J, Li C, Zhang M M, Gao K 2019 Acta Phys. Sin. 68 238Google Scholar

    [15]

    Lin Y B, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X P, Yarali E, Seitkhan A, Bakr O M, El-Labban A, Schwingenschlogl U, Tung V, McCulloch I, Laquai F, Anthopoulos T D 2019 Adv. Mater. 31 1902965Google Scholar

    [16]

    Yan T T, Song W, Huang J M, Peng R X, Huang L K, Ge Z Y 2019 Adv. Mater. 31 1902210Google Scholar

    [17]

    Ratcliff E L, Zacher B, Armstrong N R 2011 J. Phys. Chem. Lett. 2 1337Google Scholar

    [18]

    Wang Z, Wang Z, Wang Z, Zhao M, Zhou Y, Zhao B, Miao Y, Liu P, Hao Y, Wang H, Xu B, Wu Y, Yin S 2019 2D Mater. 6 045017Google Scholar

    [19]

    Wang Z, Zhang R, Zhao M, Wang Z, Wei B, Zhang X, Feng S, Cao H, Liu P, Hao Y, Wang H, Xu B, Pennycook S J, Guo J 2018 J. Mater. Chem. A 6 23773Google Scholar

    [20]

    金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟 2016 物理学报 65 028801Google Scholar

    Jin S Q, Xu Z, Zhao S L, Zhao J, Li Y, Deng L J 2016 Acta Phys. Sin. 65 028801Google Scholar

    [21]

    许中华, 陈卫兵, 叶玮琼, 杨伟丰 2014 物理学报 63 218801Google Scholar

    Xu Z H, Chen W B, Ye W Q, Yang W F 2014 Acta Phys. Sin. 63 218801Google Scholar

    [22]

    Xu L X, Li C, Hao X T, Gao K 2019 Phys. Lett. A 383 126001Google Scholar

    [23]

    Xu X P, Bi Z Z, Ma W, Wang Z S, Choy W C H, Wu W L, Zhang G J, Li Y, Peng Q 2017 Adv. Mater. 29 1704271Google Scholar

    [24]

    Jiang W G, Yu R N, Liu Z Y, Peng R X, Mi D B, Hong L, Wei Q, Hou J H, Kuang Y B, Ge Z Y 2018 Adv. Mater. 30 1703005Google Scholar

    [25]

    Lv R Z, Chen D, Liao X F, Chen L, Chen Y W 2019 Adv. Funct. Mater. 29 1805872Google Scholar

    [26]

    An Q S, Ma X L, Gao J H, Zhang F J 2019 Sci. Bull. 64 504Google Scholar

    [27]

    Chen M, Liu D, Li W, Gurney R S, Li D, Cai J, Spooner E L K, Kilbride R C, McGettrick J D, Watson T M, Li Z, Jones R A L, Lidzey D G, Wang T 2019 ACS Appl. Mater. Interfaces 11 26194Google Scholar

    [28]

    Street R A, Davies D, Khlyabich P P, Burkhart B, Thompson B C 2013 J. Am. Chem. Soc. 135 986Google Scholar

    [29]

    Bi P, Xiao T, Yang X, Niu M, Wen Z, Zhang K, Qin W, So S K, Lu G, Hao X, Liu H 2018 Nano Energy 46 81Google Scholar

计量
  • 文章访问数:  7178
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-05-28
  • 上网日期:  2020-06-13
  • 刊出日期:  2020-10-05

/

返回文章
返回