搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

He离子辐照对石墨烯微观结构及电学性能的影响

张娜 刘波 林黎蔚

引用本文:
Citation:

He离子辐照对石墨烯微观结构及电学性能的影响

张娜, 刘波, 林黎蔚

Effect of He ion irradiation on microstructure and electrical properties of graphene

Zhang Na, Liu Bo, Lin Li-Wei
PDF
HTML
导出引用
  • 本文采用5.4 keV不同剂量的He离子辐照单层石墨烯, 利用X射线光电子能谱(XPS)、拉曼光谱(Raman)和半导体参数分析仪表征辐照前后石墨烯微观结构和电学性能变化. 研究结果表明: 随着辐照剂量增大, 单层石墨烯的缺陷密度逐渐增加, 当辐照剂量增至1.6 × 1013 He+/cm2, 石墨烯开始由纳米晶结构向无定形碳结构转变, 不断增多的缺陷致使石墨烯电导率持续降低, 其电子输运机制也由玻尔兹曼扩散输运转变为跃迁输运; 狄拉克电压(Vdirac)向正电压方向的偏移量随辐照剂量增大而增大, 其主因是辐照缺陷和吸附杂质导致石墨烯P型掺杂效应增强.
    Graphene is a planar two-dimensional material composed of sp2-bonded carbon atoms with extraordinary electrical, optical and mechanical properties, and considered as one of the revolutionary electronic component materials in the future. Some studies have shown that the inert gas ion irradiation as a defect introducing technique can change the structure and properties of graphene without introducing additional effects. In this paper, the 5.4 keV He ion irradiation at the dose ranging from 0.7 × 1013 cm–2 to 2.5 × 1013 cm–2 has a strong effect on graphene deposited by CVD technology. The X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (Raman) and semi-conductor parameter analysis instrument are used to study the changes in the microstructure and electrical properties of graphene before and after irradiation. Detailed analysis shows that the defect density increases gradually with the irradiation dose increasing. Raman spectrum shows that when the irradiation dose increases to 1.6 × 1013 cm–2, the value of ID/IG begins to decrease, and XPS shows that the irradiation changes the structure of C chemical bond in graphene which causes the bonding state of C—C sp2 to be destroyed and partly converted into the C—C sp3 bonding state. Therefore, the structure of graphene begins to transform from nano-crystalline structure into sp3 amorphous structure. Simultaneously, increasing defects causes the graphene conductivity to continuously decrease, and also gives rise to the electrical transition from defect scattering mechanism based on Boltzmann transport to the hopping transport. The positive voltage direction offset of Vdirac increases nearly in direct proportion, which is due to the enhancement of graphene’s p-type doping effect caused by defects and adsorbed impurities. This work conduces to the understanding the mechanism of He ion interaction with graphene, and also provides an effective way of controlling the electronic properties.
      通信作者: 刘波, liubo2009@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11605116)资助的课题
      Corresponding author: Liu Bo, liubo2009@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605116)
    [1]

    Karimi H, Yusof R, Rahmani R, Ahmadi M T 2013 J. Nanomater. 2013 789454Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 物理学报 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [4]

    Li M, Qu G F, Wang Y Z, Zhu Z S, Shi M G, Zhou M L, Liu D, Xu Z X, Song M J, Zhang J, Bai F, Liao X D, Han J F 2019 Chin. Phys. B 28 093401Google Scholar

    [5]

    Zeng J, Liu J, Yao H J, Zhai P F, Zhang S X, Guo H, Hu P P, Duan J L, Mo D, Hou M D, Sun Y M 2016 Carbon 100 16Google Scholar

    [6]

    Kumar S, Kumar A, Tripathi A, Tyagi C, AvasthiCitation D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [7]

    Hang S J, Moktadir Z, Mizuta H 2014 Carbon 72 233Google Scholar

    [8]

    Tapasztó L, Dobrik G, Nemes-Incze P, Vertesy G, Lambin Ph, Biró L P 2008 Phys. Rev. B 78 233407Google Scholar

    [9]

    Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A 2010 Carbon 48 1592Google Scholar

    [10]

    Al-Harthi S H, Kara’a A, Hysen T, Elzain M, Al-Hinai A T, Myint M T Z 2012 Appl. Phys. Lett. 101 213107Google Scholar

    [11]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805Google Scholar

    [12]

    Amor S B, Baud G, Jacquet M, Nansé G, Fioux P, Nardin M 2000 Appl. Surf. Sci. 153 172Google Scholar

    [13]

    王淑芬 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang S F 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [14]

    曾健 2014 博士学位论文 (兰州: 兰州大学)

    Zeng J 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [15]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [16]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xiu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [17]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar

    [18]

    Wang H, Wu Y, Cong C, Shang J, Yu T 2010 ACS Nano 4 7221Google Scholar

    [19]

    Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R 2007 Phys. Chem. Chem. Phys. 9 1276Google Scholar

    [20]

    Ferrari A C 2007 Solid State Commun. 143 47Google Scholar

    [21]

    白冰 2016 博士学位论文 (镇江: 江苏大学)

    Bai B 2016 Ph. D. Dissertation (Zhenjiang: Jiangsu University) (in Chinese)

    [22]

    宋航, 刘杰, 陈超, 巴龙 2019 物理学报 68 097301Google Scholar

    Song H, Liu J, Chen C, Ba L 2019 Acta Phys. Sin. 68 097301Google Scholar

    [23]

    Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M 2011 Carbon 49 4204Google Scholar

    [24]

    Yuan H Y, Chang S, Bargatin I 2015 Nano Lett. 15 6475

    [25]

    Stauber T, Peres N M R, Guinea F 2007 Phys. Rev. B 76 205423Google Scholar

    [26]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617Google Scholar

    [27]

    Wang Q, Liu S, Ren N F 2014 Appl. Phys. Lett. 105 133506Google Scholar

    [28]

    Zhou Y B, Liao Z M, Wang Y F, Duesberg G S, Xu J, Fu Q, Wu X S, Yu D P 2010 J. Chem. Phys. 133 234703Google Scholar

    [29]

    Cancado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett. 11 3190Google Scholar

    [30]

    Zhou Y B, Han B H, Liao Z M, Wu H C, Yu D P 2011 Appl. Phys. Lett. 98 222502Google Scholar

  • 图 1  石墨烯样品XPS C1 s峰谱图 (a)未辐照; (b) 0.7 × 1013 He+/cm2; (c) 1.6 × 1013 He+/cm2; (d) 2.5 × 1013 He+/cm2

    Fig. 1.  XPS C1 s peak spectra of graphene samples: (a) Unirradiated; (b) 0.7 × 1013 He+/cm2; (c) 1.6 × 1013 He+/cm2; (d) 2.5 × 1013 He+/cm2.

    图 2  未辐照石墨烯Raman光谱图

    Fig. 2.  The Raman spectra of unirradiated graphene.

    图 3  He+辐照前后石墨烯Raman光谱图

    Fig. 3.  The Raman spectra of graphene before and after He+ irradiation.

    图 4  Raman峰强ID/IG, I2D/IG比值与辐照剂量的关系

    Fig. 4.  The relationship between Raman peak strength ID/IG, I2D/IG ratio and irradiation dose.

    图 5  不同辐照剂量下电导率随栅极电压变化曲线

    Fig. 5.  Electrical conductivity versus gate voltage at different irradiation doses.

    图 6  狄拉克电压偏移量与辐照剂量的关系

    Fig. 6.  The relation between Dirac voltage variation and irradiation dose.

    表 1  辐照前后石墨烯样品C1 s峰面积比

    Table 1.  C1 s peak area ratio of graphene samples before and after irradiation.

    辐照剂量C-C sp2C—C sp3C—O—HC—O—CO—C=O
    未辐照0.520.190.100.090.10
    0.7 × 1013 He+/cm20.500.300.130.050.02
    1.6 × 1013 He+/cm20.370.320.150.100.06
    2.5 × 1013 He+/cm20.280.350.200.120.05
    下载: 导出CSV
  • [1]

    Karimi H, Yusof R, Rahmani R, Ahmadi M T 2013 J. Nanomater. 2013 789454Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 物理学报 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [4]

    Li M, Qu G F, Wang Y Z, Zhu Z S, Shi M G, Zhou M L, Liu D, Xu Z X, Song M J, Zhang J, Bai F, Liao X D, Han J F 2019 Chin. Phys. B 28 093401Google Scholar

    [5]

    Zeng J, Liu J, Yao H J, Zhai P F, Zhang S X, Guo H, Hu P P, Duan J L, Mo D, Hou M D, Sun Y M 2016 Carbon 100 16Google Scholar

    [6]

    Kumar S, Kumar A, Tripathi A, Tyagi C, AvasthiCitation D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [7]

    Hang S J, Moktadir Z, Mizuta H 2014 Carbon 72 233Google Scholar

    [8]

    Tapasztó L, Dobrik G, Nemes-Incze P, Vertesy G, Lambin Ph, Biró L P 2008 Phys. Rev. B 78 233407Google Scholar

    [9]

    Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A 2010 Carbon 48 1592Google Scholar

    [10]

    Al-Harthi S H, Kara’a A, Hysen T, Elzain M, Al-Hinai A T, Myint M T Z 2012 Appl. Phys. Lett. 101 213107Google Scholar

    [11]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805Google Scholar

    [12]

    Amor S B, Baud G, Jacquet M, Nansé G, Fioux P, Nardin M 2000 Appl. Surf. Sci. 153 172Google Scholar

    [13]

    王淑芬 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang S F 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [14]

    曾健 2014 博士学位论文 (兰州: 兰州大学)

    Zeng J 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [15]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [16]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xiu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [17]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar

    [18]

    Wang H, Wu Y, Cong C, Shang J, Yu T 2010 ACS Nano 4 7221Google Scholar

    [19]

    Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R 2007 Phys. Chem. Chem. Phys. 9 1276Google Scholar

    [20]

    Ferrari A C 2007 Solid State Commun. 143 47Google Scholar

    [21]

    白冰 2016 博士学位论文 (镇江: 江苏大学)

    Bai B 2016 Ph. D. Dissertation (Zhenjiang: Jiangsu University) (in Chinese)

    [22]

    宋航, 刘杰, 陈超, 巴龙 2019 物理学报 68 097301Google Scholar

    Song H, Liu J, Chen C, Ba L 2019 Acta Phys. Sin. 68 097301Google Scholar

    [23]

    Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M 2011 Carbon 49 4204Google Scholar

    [24]

    Yuan H Y, Chang S, Bargatin I 2015 Nano Lett. 15 6475

    [25]

    Stauber T, Peres N M R, Guinea F 2007 Phys. Rev. B 76 205423Google Scholar

    [26]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617Google Scholar

    [27]

    Wang Q, Liu S, Ren N F 2014 Appl. Phys. Lett. 105 133506Google Scholar

    [28]

    Zhou Y B, Liao Z M, Wang Y F, Duesberg G S, Xu J, Fu Q, Wu X S, Yu D P 2010 J. Chem. Phys. 133 234703Google Scholar

    [29]

    Cancado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett. 11 3190Google Scholar

    [30]

    Zhou Y B, Han B H, Liao Z M, Wu H C, Yu D P 2011 Appl. Phys. Lett. 98 222502Google Scholar

  • [1] 沈丁, 刘耀汉, 唐树伟, 董伟, 孙闻, 王来贵, 杨绍斌. Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算. 物理学报, 2021, 70(19): 198101. doi: 10.7498/aps.70.20210521
    [2] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化. 物理学报, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [3] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [4] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [5] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [6] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [7] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [8] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [9] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [10] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [11] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态. 物理学报, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [12] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [13] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [14] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [15] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [16] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [17] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [18] 邵守福, 郑 鹏, 张家良, 钮效鵾, 王春雷, 钟维烈. CaCu3Ti4O12陶瓷的微观结构和电学性能. 物理学报, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [19] 冯文然, 阎殿然, 何继宁, 陈光良, 顾伟超, 张谷令, 刘赤子, 杨思泽. 反应等离子喷涂纳米TiN涂层的显微硬度及微观结构研究. 物理学报, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [20] 成问好, 李卫, 李传健, 潘伟. 烧结Nd-Fe-B磁体的磁性能一致性与其微观结构的关系. 物理学报, 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
计量
  • 文章访问数:  8019
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-10-17
  • 上网日期:  2019-12-13
  • 刊出日期:  2020-01-05

/

返回文章
返回