搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiH4/H2等离子体气相生长硅薄膜的动力学模型

文书堂 张红卫 张丽伟 陈改荣 卢景霄

引用本文:
Citation:

SiH4/H2等离子体气相生长硅薄膜的动力学模型

文书堂, 张红卫, 张丽伟, 陈改荣, 卢景霄

A kinetic model for silicon film growth by silane/hydrogen glow discharge

Zhang Hong-Wei, Chen Gai-Rong, Zhang Li-Wei, Lu Jing-Xiao, Wen Shu-Tang
PDF
导出引用
  • 在化学气相沉积微晶硅薄膜过程中,为了降低成本,必须提高生长速率,但薄膜的微观结构和光电性能则随之降低,原因是成膜先驱物在薄膜表面上的扩散长度降低了. 本文利用量子化学的反应动力学理论建立有关成膜先驱物SiH3和H的反应平衡方程,求解薄膜生长速率和成膜先驱物的扩散长度,并找出影响生长速率与扩散长度的微观参数,发现生长速率不仅与流向衬底的SiH3的通量密度有关,而且与H的通量密度有关;SiH3的扩散长度与衬底温度和薄膜表面的硅氢键的形态有关,当
    During the process of plasma enhanced chemical vapor deposition, the growth rate of microcrystalline silicon films must be improved to reduce manufacture cost. With the increase of growth rate, the photoelectrical properties of such films will be greatly decreased. The main cause is the diffusion length of the precursors on the film surface decreases. In this study, a quantitative kinetic model was developed and the reaction balance equations of SiH3 and H were constructed, and the deposition rate, diffusion length and their influencing factors were obtained. We find that the deposition rate is determined by the fluxes of both SiH3 and H. The diffusion length of precursors is determined by the substrate temperature and the configuration of the surface silicon-hydrogen bonds. The diffusion length has a higher value when the growing film surface is covered by mono-hydrides, it has a smaller value when covered by tri-hydride, and it has a value close to zero when covered by dangling bonds.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CB202601)资助的课题.
    [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 297 (in Chnese) [张庆瑜、马腾才、潘正瑛、汤家镛 2000 物理学报 49 297]

    [2]

    Yang N, Chen G H, Zhang Y, Gong W B, Zhu H S 2000 Acta Phys. Sin. 49 2225 (in Chinese) [杨 宁、陈光华、张 阳、公维宾、朱鹤孙 2000 物理学报 49 2225]

    [3]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 480 (in Chinese) [马天宝、胡元中、王 慧 2007 物理学报 56 480]

    [4]

    Liu Z L, Wei H L, Wang H W, Wang J Z 1999 Acta Phys. Sin. 48 1302 (in Chinese) [刘祖黎、魏合林、王汉文、王均震 1999 物理学报 48 1302]

    [5]

    Pflüger A, Schroder B, Bartaa H J 2003 Thin Solid Films 430 73

    [6]

    Zhang P F, Zheng X P, He D Y 2003 Sci. Chin. Ser. G 33 340 (in Chinese)[张佩峰、郑小平、贺德衍 2003 中国科学, G 辑 33 340]

    [7]

    Bogaerts A, Bleecker K, Kolev I, Madani M 2005 Surf. Coat. Tech. 200 62

    [8]

    Hua G S, Lou Y M, Christofides P D 2008 Chem. Eng. Sci. 63 1800

    [9]

    Nishimoto T, Takai M, Kondo M, Matsuda A 2000 Proc. 28th IEEE PVSC (Anchorage: IEEE Press) p876

    [10]

    Wen S T, Lu J X, Li Y X, Wang H Y, Zhang H W, Wen L W 2008 Mod. Phys. Lett. B 22 1727

    [11]

    Wen S T, Zhang L W, Lu J X, Li Y X, Du Z Y 2008 Korean J. Chem. Eng. 25 1539

    [12]

    Crandall J R, Luft W 1995 Prog. Photovoltaics 3 315

    [13]

    Street R A 1991 Hydrogenated Amorphous Silicon (New York: Cambridge University Press) p229

    [14]

    Gupta A 2001 (Ph. D. Dissertation) (Raleigh: North Carolina State University)

    [15]

    Bray K R, Parsons G N 2001 Phys. Rev. B 65 35311

    [16]

    Gupta A, Parsons G N 2000 J. Vac. Sci. Technol. B 18 1764

    [17]

    Robertson J 2000 J. Appl. Phys. 87 2608

    [18]

    Kessels W M M, Smets A H, Marra D C, Aydil E S, Schram D C, Sanden M C M 2001 Thin Solid Films 383 154

    [19]

    Doren D J 1996 Advances in Chemical Physics (New York: John Wiley & Sons Inc) p124

    [20]

    Ramalingam S, Maroudas D, Aydil E S 1999 J. Appl. Phys. 86 2872

    [21]

    Dewarrat R, Robertson J 2002 J. Non-Cryst. Solids 299 48

    [22]

    Keudell A, AbeIson J R 1999 Phys. Rev. B 59 5791

    [23]

    Dinger A, Lutterloh C, Kuppers J 1999 Chem. Phys. Lett. 311 202

    [24]

    Buntin S A 1996 J. Chem. Phys. 105 2066

    [25]

    Widdra W, Yi S I, Maboudian R, Briggs G A D, Weinberg W H 1995 Phys. Rev. Lett. 74 2074

    [26]

    Koleske D D, Gates S M, Jackson B 1994 J. Chem. Phys. 101 3301

    [27]

    Koleske D D, Gates S M, Schultz J A 1993 J. Chem. Phys. 99 5619

    [28]

    Sinniah K, Sherman M G, Lewis L B, Weinberg W H, Yates J T, Janda K C 1990 J. Chem. Phys. 92 5700

    [29]

    Ramalingarn S, Maroudas D, Aydil E S, Walch S P 1998 Surf. Sci. 418 L8

    [30]

    Perrin I, Shiratani M, Kae-Nune P, Videlot H, Jolly J, Guillon J 1998 J. Vac. Sci. Tech. A 16 278

    [31]

    Keudell A, Abelson J R 1999 Phys. Rev. B 59 5791

    [32]

    Kitahar K, Murakami S, Hara A, Joshi C 1998 Appl. Phys. Lett. 72 19

    [33]

    Itabashi N, Nishiwaki N, Magane M, Goto T, Matsuda A, Yamada C, Hirota E 1990 Jpn. J.Appl. Phys. 29 585

    [34]

    Tachibana K, Mukai T, Harima H 1991 Jpn. J. Appl. Phys. 30 L1208

    [35]

    Wen S T, Zhang L W, Lu J X, Feng X L, Guo X J, Shen C H, Xu Y H, Li B S 2008 Int. J. Mod. Phys. B 23 1147

    [36]

    Gao X Y, Li R, Chen Y S, Lu J X, Liu P, Feng T H, Wang H J, Yang S E 2006 Acta Phys. Sin. 55 98 (in Chinese) [郜小勇、李 瑞、陈永生、卢景霄、刘 萍、冯团辉、王红娟、杨仕娥 2006 物理学报 55 98]

    [37]

    Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H, Xiong S Z 2006 Acta Phys. Sin. 55 6698 (in Chinese) [张晓丹、赵 颖、高艳涛、陈 飞、朱 锋、魏长春、孙 建、耿新华、熊绍珍 2006 物理学报 55 6698]

  • [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 297 (in Chnese) [张庆瑜、马腾才、潘正瑛、汤家镛 2000 物理学报 49 297]

    [2]

    Yang N, Chen G H, Zhang Y, Gong W B, Zhu H S 2000 Acta Phys. Sin. 49 2225 (in Chinese) [杨 宁、陈光华、张 阳、公维宾、朱鹤孙 2000 物理学报 49 2225]

    [3]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 480 (in Chinese) [马天宝、胡元中、王 慧 2007 物理学报 56 480]

    [4]

    Liu Z L, Wei H L, Wang H W, Wang J Z 1999 Acta Phys. Sin. 48 1302 (in Chinese) [刘祖黎、魏合林、王汉文、王均震 1999 物理学报 48 1302]

    [5]

    Pflüger A, Schroder B, Bartaa H J 2003 Thin Solid Films 430 73

    [6]

    Zhang P F, Zheng X P, He D Y 2003 Sci. Chin. Ser. G 33 340 (in Chinese)[张佩峰、郑小平、贺德衍 2003 中国科学, G 辑 33 340]

    [7]

    Bogaerts A, Bleecker K, Kolev I, Madani M 2005 Surf. Coat. Tech. 200 62

    [8]

    Hua G S, Lou Y M, Christofides P D 2008 Chem. Eng. Sci. 63 1800

    [9]

    Nishimoto T, Takai M, Kondo M, Matsuda A 2000 Proc. 28th IEEE PVSC (Anchorage: IEEE Press) p876

    [10]

    Wen S T, Lu J X, Li Y X, Wang H Y, Zhang H W, Wen L W 2008 Mod. Phys. Lett. B 22 1727

    [11]

    Wen S T, Zhang L W, Lu J X, Li Y X, Du Z Y 2008 Korean J. Chem. Eng. 25 1539

    [12]

    Crandall J R, Luft W 1995 Prog. Photovoltaics 3 315

    [13]

    Street R A 1991 Hydrogenated Amorphous Silicon (New York: Cambridge University Press) p229

    [14]

    Gupta A 2001 (Ph. D. Dissertation) (Raleigh: North Carolina State University)

    [15]

    Bray K R, Parsons G N 2001 Phys. Rev. B 65 35311

    [16]

    Gupta A, Parsons G N 2000 J. Vac. Sci. Technol. B 18 1764

    [17]

    Robertson J 2000 J. Appl. Phys. 87 2608

    [18]

    Kessels W M M, Smets A H, Marra D C, Aydil E S, Schram D C, Sanden M C M 2001 Thin Solid Films 383 154

    [19]

    Doren D J 1996 Advances in Chemical Physics (New York: John Wiley & Sons Inc) p124

    [20]

    Ramalingam S, Maroudas D, Aydil E S 1999 J. Appl. Phys. 86 2872

    [21]

    Dewarrat R, Robertson J 2002 J. Non-Cryst. Solids 299 48

    [22]

    Keudell A, AbeIson J R 1999 Phys. Rev. B 59 5791

    [23]

    Dinger A, Lutterloh C, Kuppers J 1999 Chem. Phys. Lett. 311 202

    [24]

    Buntin S A 1996 J. Chem. Phys. 105 2066

    [25]

    Widdra W, Yi S I, Maboudian R, Briggs G A D, Weinberg W H 1995 Phys. Rev. Lett. 74 2074

    [26]

    Koleske D D, Gates S M, Jackson B 1994 J. Chem. Phys. 101 3301

    [27]

    Koleske D D, Gates S M, Schultz J A 1993 J. Chem. Phys. 99 5619

    [28]

    Sinniah K, Sherman M G, Lewis L B, Weinberg W H, Yates J T, Janda K C 1990 J. Chem. Phys. 92 5700

    [29]

    Ramalingarn S, Maroudas D, Aydil E S, Walch S P 1998 Surf. Sci. 418 L8

    [30]

    Perrin I, Shiratani M, Kae-Nune P, Videlot H, Jolly J, Guillon J 1998 J. Vac. Sci. Tech. A 16 278

    [31]

    Keudell A, Abelson J R 1999 Phys. Rev. B 59 5791

    [32]

    Kitahar K, Murakami S, Hara A, Joshi C 1998 Appl. Phys. Lett. 72 19

    [33]

    Itabashi N, Nishiwaki N, Magane M, Goto T, Matsuda A, Yamada C, Hirota E 1990 Jpn. J.Appl. Phys. 29 585

    [34]

    Tachibana K, Mukai T, Harima H 1991 Jpn. J. Appl. Phys. 30 L1208

    [35]

    Wen S T, Zhang L W, Lu J X, Feng X L, Guo X J, Shen C H, Xu Y H, Li B S 2008 Int. J. Mod. Phys. B 23 1147

    [36]

    Gao X Y, Li R, Chen Y S, Lu J X, Liu P, Feng T H, Wang H J, Yang S E 2006 Acta Phys. Sin. 55 98 (in Chinese) [郜小勇、李 瑞、陈永生、卢景霄、刘 萍、冯团辉、王红娟、杨仕娥 2006 物理学报 55 98]

    [37]

    Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H, Xiong S Z 2006 Acta Phys. Sin. 55 6698 (in Chinese) [张晓丹、赵 颖、高艳涛、陈 飞、朱 锋、魏长春、孙 建、耿新华、熊绍珍 2006 物理学报 55 6698]

  • [1] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [2] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [3] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [4] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [5] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [6] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [7] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究. 物理学报, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [8] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [9] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [10] 于 威, 王保柱, 杨彦斌, 路万兵, 傅广生. 螺旋波等离子体化学气相沉积纳米硅薄膜的光学发射谱研究. 物理学报, 2005, 54(5): 2394-2398. doi: 10.7498/aps.54.2394
    [11] 杨武保, 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究. 物理学报, 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [12] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究. 物理学报, 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
    [13] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究. 物理学报, 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [14] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [15] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [16] 张永平, 顾有松, 高鸿钧, 张秀芳. 微波等离子体化学气相沉积法制备C3N4薄膜的结构研究. 物理学报, 2001, 50(7): 1396-1400. doi: 10.7498/aps.50.1396
    [17] 胡颖. 微波等离子体化学气相沉积方法在Si衬底上生长SiC纳米线. 物理学报, 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
    [18] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [19] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
    [20] 张仿清, 张亚非, 杨映虎, 李敬起, 陈光华, 蒋翔六. 直流弧光放电化学气相沉积(CVD)法制备金刚石薄膜及其等离子体的光发射谱原位测量. 物理学报, 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
计量
  • 文章访问数:  7544
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-05
  • 修回日期:  2010-03-05
  • 刊出日期:  2010-07-15

/

返回文章
返回