搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展

邵宇飞 王绍青

引用本文:
Citation:

基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展

邵宇飞, 王绍青

Quasicontinuum simulation of crack propagation in nanocrystalline Ni

Shao Yu-Fei, Wang Shao-Qing
PDF
导出引用
  • 通过准连续介质方法模拟了纳米多晶体Ni中裂纹的扩展过程.模拟结果显示:裂纹尖端的应力场可以导致晶界分解、层错和变形孪晶的形成等塑性形变,在距离裂纹尖端越远的位置,变形孪晶越少,在裂纹尖端附近相同距离处,层错要远多于变形孪晶.这反映了局部应力的变化以及广义平面层错能对变形孪晶的影响.计算了裂纹尖端附近区域原子级局部静水应力的分布.计算结果表明:裂纹前端晶界处容易产生细微空洞,这些空洞附近为张应力集中区,并可能促使裂纹沿着晶界扩展.模拟结果定性地反映了纳米多晶体Ni中的裂纹扩展过程,并与相关实验结果符合得很好
    The propagation process of crack in the nanocrystalline Ni is simulated via the quasicontinuum method. The results show that the stress near the crack tip could prompt the disassociation of grain boundaries, and the formation of stacking faults and deformation twins. Farther from the crack tip, fewer deformation twins can be found. There are more stacking faults than deformation twins in the grains, which approximately have the same distance to the crack tip. The effect on deformation twins from the variation of local stress and generalized planar fault energies is manifested by these results. The distribution of hydrostatic stress on atomic-level around the crack tip is also calculated. It is shown that nanovoids can be easily created in grain boundaries in front of the crack tip. There exists an intense tensile stress state in the grain boundary regions around these nanovoids. As a result of the stress accumulation, the crack propagates along the grain boundaries. Our simulated results qualitatively uncover the propagation process of crack in nanocrystalline Ni, which agrees well with the relevant experimental results.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CB605103)资助的课题.
    [1]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [2]

    Dao M, Lu L, Asaro R J, Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [3]

    Zhao Y H, Topping T, Bingert J F, Thornton J J, Dangelewicz A M, Li Y, Liu W, Zhu Y T, Zhou Y Z, Lavernia E J 2008 Adv. Mater. 20 3028

    [4]

    Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P 2003 Acta Mater. 51 387

    [5]

    Shan Z W, Knapp J A, Follstaedt D M, Stach E A, Wiezorek J M K, Mao S X 2008 Phys. Rev. Lett. 100 105502

    [6]

    Xie J J, Wu X L, Hong Y S 2007 Scripta Mater. 57 5

    [7]

    Farkas D, Swygenhoven H V, Derlet P M 2002 Phys. Rev. B 66 060101

    [8]

    Cao A J, Wei Y G 2007 Phys. Rev. B 76 024113

    [9]

    Farkas D, Willemann M, Hyde B 2005 Phys. Rev. Lett. 94 165502

    [10]

    Zhou H F, Qu S X 2010 Nanotechnology 21 035706

    [11]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [12]

    Xie H X, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [13]

    Abraham F F, Walkup R, Gao H J, Duchaineau M, Rubia T, Seager M 2002 Proc. Natl. Acad. Sci. USA 99 5783

    [14]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [15]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [16]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [17]

    Miller R E, Ortiz M, Phillips R, Shenoy V, Tadmor E B 1998 Eng. Fracture Mech. 61 427

    [18]

    Zhou T, Yang X H, Chen C Y 2009 Int. J. Solids Struct. 46 1975

    [19]

    Swygenhoven H V, Farkas D, Caro A 2000 Phys. Rev. B 62 831

    [20]

    Swygenhoven H V, Derlet P M, Froseth A G 2004 Nature Mater. 3 399

    [21]

    Wu X L, Zhu Y T 2008 Phys. Rev. Lett. 101 025503

    [22]

    Farkas D, Petegem S V, Derlet P M, Swygenhoven H V 2005 Acta Mater. 53 3115

    [23]

    Tadmor E B, Ortiz M, Phillips R 1996 Philos. Mag. A 73 1529

    [24]

    Tadmor E B, Phillips R, Ortiz M 1996 Langmuir 12 4529

    [25]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [26]

    Voronoi G Z 1908 J. Reine Angew. Math. 134 199

    [27]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117

    [28]

    Sih G C, Liebowitz H 1968 Fracture: An Advanced Treatise (Vol. 2) (New York: Academic Press) p67

    [29]

    Meyers M A, Chawla K K 2009 Mechanical Behavior of Materials (2nd Ed) (New York: Cambridge University Press) p114

    [30]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [31]

    Li J 2003 Modeling Simul. Mater. Sci. Engng. 11 173

    [32]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [33]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [34]

    Saramas M, Derlet P M, Swygenhoven H V 2003 Phys. Rev. B 68 224111

    [35]

    Zimmerman J A, Gao H J, Abraham F F 2000 Modeling Simul. Mater. Sci. Engng. 8 103

    [36]

    Siegel D J 2005 Appl. Phys. Lett. 87 121901

  • [1]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [2]

    Dao M, Lu L, Asaro R J, Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [3]

    Zhao Y H, Topping T, Bingert J F, Thornton J J, Dangelewicz A M, Li Y, Liu W, Zhu Y T, Zhou Y Z, Lavernia E J 2008 Adv. Mater. 20 3028

    [4]

    Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P 2003 Acta Mater. 51 387

    [5]

    Shan Z W, Knapp J A, Follstaedt D M, Stach E A, Wiezorek J M K, Mao S X 2008 Phys. Rev. Lett. 100 105502

    [6]

    Xie J J, Wu X L, Hong Y S 2007 Scripta Mater. 57 5

    [7]

    Farkas D, Swygenhoven H V, Derlet P M 2002 Phys. Rev. B 66 060101

    [8]

    Cao A J, Wei Y G 2007 Phys. Rev. B 76 024113

    [9]

    Farkas D, Willemann M, Hyde B 2005 Phys. Rev. Lett. 94 165502

    [10]

    Zhou H F, Qu S X 2010 Nanotechnology 21 035706

    [11]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [12]

    Xie H X, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [13]

    Abraham F F, Walkup R, Gao H J, Duchaineau M, Rubia T, Seager M 2002 Proc. Natl. Acad. Sci. USA 99 5783

    [14]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [15]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [16]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [17]

    Miller R E, Ortiz M, Phillips R, Shenoy V, Tadmor E B 1998 Eng. Fracture Mech. 61 427

    [18]

    Zhou T, Yang X H, Chen C Y 2009 Int. J. Solids Struct. 46 1975

    [19]

    Swygenhoven H V, Farkas D, Caro A 2000 Phys. Rev. B 62 831

    [20]

    Swygenhoven H V, Derlet P M, Froseth A G 2004 Nature Mater. 3 399

    [21]

    Wu X L, Zhu Y T 2008 Phys. Rev. Lett. 101 025503

    [22]

    Farkas D, Petegem S V, Derlet P M, Swygenhoven H V 2005 Acta Mater. 53 3115

    [23]

    Tadmor E B, Ortiz M, Phillips R 1996 Philos. Mag. A 73 1529

    [24]

    Tadmor E B, Phillips R, Ortiz M 1996 Langmuir 12 4529

    [25]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [26]

    Voronoi G Z 1908 J. Reine Angew. Math. 134 199

    [27]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117

    [28]

    Sih G C, Liebowitz H 1968 Fracture: An Advanced Treatise (Vol. 2) (New York: Academic Press) p67

    [29]

    Meyers M A, Chawla K K 2009 Mechanical Behavior of Materials (2nd Ed) (New York: Cambridge University Press) p114

    [30]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [31]

    Li J 2003 Modeling Simul. Mater. Sci. Engng. 11 173

    [32]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [33]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [34]

    Saramas M, Derlet P M, Swygenhoven H V 2003 Phys. Rev. B 68 224111

    [35]

    Zimmerman J A, Gao H J, Abraham F F 2000 Modeling Simul. Mater. Sci. Engng. 8 103

    [36]

    Siegel D J 2005 Appl. Phys. Lett. 87 121901

计量
  • 文章访问数:  8191
  • PDF下载量:  969
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-06
  • 修回日期:  2010-01-22
  • 刊出日期:  2010-05-05

/

返回文章
返回