搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La2-xNdxCuO4+δ(0.1≤x≤1.2)体系中滞弹性弛豫与相变内耗研究

何庆 杨春利 吴修胜 陈志军 陈初升 刘卫

引用本文:
Citation:

La2-xNdxCuO4+δ(0.1≤x≤1.2)体系中滞弹性弛豫与相变内耗研究

何庆, 杨春利, 吴修胜, 陈志军, 陈初升, 刘卫

Anelastic relaxation and phase transition internal friction properties of La2-x NdxCuO4+δ(0.1≤x≤1.2) compounds

He Qing, Yang Chun-Li, Wu Xiu-Sheng, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei
PDF
导出引用
  • 通过对La2-xNdxCuO4+δ(0.1≤x≤1.2)体系中滞弹性弛豫与相变内耗性能的研究发现,当0.1≤x≤1.0时,在250K左右存在一个与间隙氧有关的弛豫内耗峰,并且当0.1≤x≤0.4时,弛豫内耗峰峰高随着x值的增大而升高,此时体系为正交结构;当0.5≤x≤1.0时,体系在宏观上呈现四方结构,此时内耗峰峰高随着x<
    The low-frequency internal frictions of La2-xNdi>xCuO4+δ(0.1≤x≤1.2) compounds are measured. The results show that the relaxation internal friction peak related to the excess oxygen atoms appears around 250K with 0.1≤x≤1.0.And the peak becomes higher with the value of x increasing for 0.1≤x≤0.4 and all these compounds have orthorhombic structures. When 0.5≤x≤1.0, the compounds have all tetragonal structures on a macro scale and the peak reduces as the value of x increases. However, the sample with x=1.2 exhibits tetragonal structure but the relaxation internal friction peak is not found. Further more, when 0.1≤x≤0.8, there exists a phase transition internal friction peak around 550K. The transition temperature shifts toward high temperature zone as the value of x increases and relative shear modulus M is enlarged. But for x=1.0 and 1.2, there appears no phase transition internal friction peak in the measurement range. We find that all these phase transition internal friction peaks are related to the transition between the orthorhombic structure and the tetragonal structure.
    • 基金项目: 国家自然科学基金(批准号:10574123,50332040)和安徽建筑工业学院硕博启动基金(批准号:2008)资助的课题.
    [1]

    Rial C, Morán E, Alario-Franco M A, Amador U, Andersen N H 1997 Physica C 288 91

    [2]

    Wilhelm H, Cros C, Reny E,Demazeau G, Hanfland M 2000 J. Solid. State. Chem. 151 231

    [3]

    Zhang H L, Liu W, Li D C, Wu X S, Chen C S 2004 Acta. Phys. Sin. 53 3834 (in Chinese) [张华力、刘 卫、李栋才、吴修胜、陈初升 2004 物理学报 53 3834]

    [4]

    Yang C L, Wu X S, Chen Z J, Gao H Y, Liu W 2009 Mat. Sci. Eng. B-Solid.163 40

    [5]

    Nowick A S, Berry B S 1972 Anelastic relaxation in crystalline solids (Academic Press New York)

    [6]

    Shen H M, Xu Z R, Zhu J S, Yang Z J, Wang Y N 1982 Acta. Phys. Sin. 31 1449 (in Chinese) [沈惠敏、许自然、朱劲松、杨照金、王业宁 1982物理学报 31 1449]

    [7]

    Fang Q F, Ge T S 1993 Acta. Phys. Sin. 42 458 (in Chinese) [方前锋、葛庭燧 1993 物理学报 42 458]

    [8]

    Fang Q F 1997 Acta. Phys. Sin. 46 536 (in Chinese) [方前锋1997 物理学报 46 536]

    [9]

    Liang Y F, Shui J P, Chen G, Zhu Z G 2000 Acta. Phys. Sin. 49 105 (in Chinese) [梁云峰、水嘉鹏、陈 刚、朱震刚 2000 物理学报 49 105]

    [10]

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta. Phys. Sin. 57 7083 (in Chinese) [王清周、陆东梅、崔春翔、韩福生 2008 物理学报 57 7083] 〖11] Sugai S, Adachi T, Sugiura K, Takahashi T, Obara K, Takayanagi Y, Koike Y 2009 J. Supercond. Nov. Magn.22 313

    [11]

    Matsuda M, Hiraka H, Fujita M, Ohta S, Wakimoto S, Yamada K 2008 J. Phys. Chem. Solids. 69 3181

    [12]

    Fujita M, Goka H, Adachi T, Koile Y, Yamada K 2005 Physica C 431 257

    [13]

    Pletnev R N, Yurieva é I, Verkhovskii S V, Bazuev G V 2005 J. Struct. Chem. 59 46

    [14]

    Odier P, Municken M, Crespin M, Dubois F, Mouron P, Choisnet J 2002 J. Mater. Chem. 12 1370

    [15]

    Chen Z J 2009 MS Thesis (Hefei: University of Science and Technology of China) (in Chinese) [陈志军2009 硕士学位论文 (合肥:中国科学技术大学)]

    [16]

    Liu W, Liu Y, Wen Y T, Qian Y T 1994 Chinese Sci. Bull. 39 222 (in Chinese) [刘 卫、刘 奕、文亦汀、钱逸泰 1994 科学通报 39 222]

    [17]

    Zhang H L, Wu X S, Chen C S, Liu W 2005 Phys. Rev. B 71 064422

    [18]

    Licia M, Robin G W, John A K 2000 J. Mater. Chem. 10 2349

    [19]

    Cordero F, Grandini C R, Cannelli G 1998 Phys. Rev. B 57 8580

  • [1]

    Rial C, Morán E, Alario-Franco M A, Amador U, Andersen N H 1997 Physica C 288 91

    [2]

    Wilhelm H, Cros C, Reny E,Demazeau G, Hanfland M 2000 J. Solid. State. Chem. 151 231

    [3]

    Zhang H L, Liu W, Li D C, Wu X S, Chen C S 2004 Acta. Phys. Sin. 53 3834 (in Chinese) [张华力、刘 卫、李栋才、吴修胜、陈初升 2004 物理学报 53 3834]

    [4]

    Yang C L, Wu X S, Chen Z J, Gao H Y, Liu W 2009 Mat. Sci. Eng. B-Solid.163 40

    [5]

    Nowick A S, Berry B S 1972 Anelastic relaxation in crystalline solids (Academic Press New York)

    [6]

    Shen H M, Xu Z R, Zhu J S, Yang Z J, Wang Y N 1982 Acta. Phys. Sin. 31 1449 (in Chinese) [沈惠敏、许自然、朱劲松、杨照金、王业宁 1982物理学报 31 1449]

    [7]

    Fang Q F, Ge T S 1993 Acta. Phys. Sin. 42 458 (in Chinese) [方前锋、葛庭燧 1993 物理学报 42 458]

    [8]

    Fang Q F 1997 Acta. Phys. Sin. 46 536 (in Chinese) [方前锋1997 物理学报 46 536]

    [9]

    Liang Y F, Shui J P, Chen G, Zhu Z G 2000 Acta. Phys. Sin. 49 105 (in Chinese) [梁云峰、水嘉鹏、陈 刚、朱震刚 2000 物理学报 49 105]

    [10]

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta. Phys. Sin. 57 7083 (in Chinese) [王清周、陆东梅、崔春翔、韩福生 2008 物理学报 57 7083] 〖11] Sugai S, Adachi T, Sugiura K, Takahashi T, Obara K, Takayanagi Y, Koike Y 2009 J. Supercond. Nov. Magn.22 313

    [11]

    Matsuda M, Hiraka H, Fujita M, Ohta S, Wakimoto S, Yamada K 2008 J. Phys. Chem. Solids. 69 3181

    [12]

    Fujita M, Goka H, Adachi T, Koile Y, Yamada K 2005 Physica C 431 257

    [13]

    Pletnev R N, Yurieva é I, Verkhovskii S V, Bazuev G V 2005 J. Struct. Chem. 59 46

    [14]

    Odier P, Municken M, Crespin M, Dubois F, Mouron P, Choisnet J 2002 J. Mater. Chem. 12 1370

    [15]

    Chen Z J 2009 MS Thesis (Hefei: University of Science and Technology of China) (in Chinese) [陈志军2009 硕士学位论文 (合肥:中国科学技术大学)]

    [16]

    Liu W, Liu Y, Wen Y T, Qian Y T 1994 Chinese Sci. Bull. 39 222 (in Chinese) [刘 卫、刘 奕、文亦汀、钱逸泰 1994 科学通报 39 222]

    [17]

    Zhang H L, Wu X S, Chen C S, Liu W 2005 Phys. Rev. B 71 064422

    [18]

    Licia M, Robin G W, John A K 2000 J. Mater. Chem. 10 2349

    [19]

    Cordero F, Grandini C R, Cannelli G 1998 Phys. Rev. B 57 8580

  • [1] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [2] 王 强, 周正存, 韩福生. 快冷Fe71Al29合金中的两个内耗峰. 物理学报, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [3] 刘咏松, 水嘉鹏. 液晶苯酚酯相变内耗峰与振动频率的相关性. 物理学报, 1998, 47(5): 778-783. doi: 10.7498/aps.47.778
    [4] 方前锋. 低应力振幅下非线性滞弹性内耗峰(P′1峰)的数值分析. 物理学报, 1997, 46(3): 536-543. doi: 10.7498/aps.46.536
    [5] 葛庭燧. 位错芯区扩散引起的非线性滞弹性内耗峰. 物理学报, 1996, 45(6): 1016-1025. doi: 10.7498/aps.45.1016
    [6] 方前锋, 葛庭燧. 与位错和点缺陷的交互作用有关的低温内耗峰. 物理学报, 1993, 42(3): 458-464. doi: 10.7498/aps.42.458
    [7] 张进修, 曾文光, 杜仲廉, 林光明, 梁凯峰, 林志成. Bi0.8Pb0.2SrCaCuOy超导体中磁通运动引起的内耗峰. 物理学报, 1990, 39(8): 84-89. doi: 10.7498/aps.39.84
    [8] 杜家驹. 钛合金的六角密堆α相中微量氢所引起的内耗峰. 物理学报, 1982, 31(6): 801-806. doi: 10.7498/aps.31.801
    [9] 潘正良, 王中光, 孔庆虎, 葛庭燧. 铝一镁合金中的反常位错内耗峰. 物理学报, 1980, 29(9): 1180-1185. doi: 10.7498/aps.29.1180
    [10] 颜鸣皋, 袁振民. 铜的织构对晶粒间界内耗峰的影响. 物理学报, 1975, 24(1): 51-56. doi: 10.7498/aps.24.51
    [11] 葛庭燧, 张志舜, 张进修. 铝-0.1%镁合金中表现反常振幅效应的低频位错内耗峰. 物理学报, 1966, 22(3): 270-280. doi: 10.7498/aps.22.270
    [12] 王业宁, 许自然, 韩叶龙. 钼的晶界内耗峰及少量间隙杂质影响晶界脆性的机制. 物理学报, 1966, 22(6): 647-658. doi: 10.7498/aps.22.647
    [13] 马应良, 葛庭燧. 铁锰合金在正、反马氏体型相变温度范围内出现的位错内耗峰. 物理学报, 1964, 20(9): 909-918. doi: 10.7498/aps.20.909
    [14] 孔庆平. 高铬钢和高铬镍钢在高温下的几个内耗峰. 物理学报, 1961, 17(5): 237-245. doi: 10.7498/aps.17.237
    [15] 马远力, 周南波. 钼丝中含氧和氮所引起的内耗峰. 物理学报, 1961, 17(9): 450-452. doi: 10.7498/aps.17.450
    [16] 葛庭燧, 马应良. 碳在低碳合金马氏体中微扩散所引起的内耗峰. 物理学报, 1957, 13(1): 69-77. doi: 10.7498/aps.13.69
    [17] 葛庭燧;钱知强. 碳在面心立方系合金钢中扩散内耗峰的机构. 物理学报, 1956, 12(6): 607-621. doi: 10.7498/aps.12.607
    [18] 卡列尔·密歇克. 镍在交变磁场中的一个磁内耗峰. 物理学报, 1955, 11(2): 179-190. doi: 10.7498/aps.11.179
    [19] 葛庭燧, 马应良. 钢中马氏体在回火转变中所引起的内耗峰. 物理学报, 1955, 11(6): 479-492. doi: 10.7498/aps.11.479
    [20] 葛庭燧, 钱知强, 卡列尔·密歇克. 关於镍中含碳所引起的内耗峰. 物理学报, 1955, 11(5): 403-410. doi: 10.7498/aps.11.403
计量
  • 文章访问数:  8163
  • PDF下载量:  745
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-21
  • 修回日期:  2010-03-14
  • 刊出日期:  2010-11-15

/

返回文章
返回