搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对光学微腔光子激子系统玻色凝聚的影响

程正富 龙晓霞 郑瑞伦

引用本文:
Citation:

温度对光学微腔光子激子系统玻色凝聚的影响

程正富, 龙晓霞, 郑瑞伦

Influence of temperature on the Bose condensation of photons and excitons in optic microcavity

Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun
PDF
导出引用
  • 建立了光学微腔中光子激子系统的物理模型,确定了光学微腔宽度为常数和可变这两种情况下玻色凝聚时化学势的变化范围和粒子数密度随温度和位置的变化规律.以半导体GaAs光学微腔为例,探讨了温度对玻色凝聚的影响.研究表明:系统出现玻色凝聚时激子化学势的变化范围与材料介电函数、微腔宽度有关,而光子和激子的粒子数密度及总粒子数还与温度有关.玻色凝聚温度理论值与实验值接近.刚出现玻色凝聚时,光子和激子的粒子数密度几乎相等,且局限在r=0的附近;随着温度的降低,光子和激子的粒子数密度都增加,且存在的范围也不断扩大;不论光学微腔宽度是否可变,光子和激子的粒子数密度以及总粒子数都随温度的降低而增大,光子数总是多于激子数.
    In this paper, an exciton-photon model is created in an optic microcavity, and then in Bose condensation (BC), the variations of chemical potential range and number density of particles with temperature and position are studied in cases: constant width and varying width. Taking a semiconductor optic microcavity GaAs as example, the influence of temperature on BC is analyzed. The result shows that the range of chemical potential is related to dielectric function and microcavity width, while the number densities of photons and excitons and the sum of both particle numbers are related not only to them but also to temperature. The theoretical temperature of BC of GaAs is close to the experimental value. The densities of photons and excitons are almost equal, and their distributions are restricted to r=0 when BC occurs. With the reduction of temperature the number densities of both particles increase and their distributions expand, and the number of photons is more than that of excitons no matter how the width of optic microcavity changes.
    • 基金项目: 重庆市教育委员会科学技术研究计划(批准号: KJ071206)资助的课题.
    [1]

    Anderson M R, Mewes M O, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1996 Science 273 84

    [2]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [3]

    Imamoglu A, Ram R 1996 J. Phys. Lett. A 214 193

    [4]

    Loruovik Y E, Semielov A G, Vilangder M 2006 Theor. Exp. Phys. 84 176 (in Russian)

    [5]

    Loruovik Y E, Semielov A G 2007 Theor. Exp. Phys. 86 1007 (in Russian)

    [6]

    Baliti R, Hartwelt V, Snoke D 2007 Science 316 1007

    [7]

    Bonolowa N S, Noruvik Y Y 2008 Phys. Stat. Sol. 50 1496 (in Russian)

    [8]

    Yu X C, Mo Y 2004 Acta Phys. Sin. 53 4075 (in Chinese) [余学才、 莫 影 2004 物理学报 53 4075]

    [9]

    Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991 (in Chinese)[崔海涛、 王林成、 衣学喜 2004 物理学报 53 991]

    [10]

    Yu X C, Ye Y T, Cheng L 2006 Acta Phys. Sin. 55 551 (in Chinese)[余学才、 叶玉堂、 程 琳 2006 物理学报 55 551 ]

    [11]

    Tan W H, Yan K Z 1999 Acta Phys. Sin. 48 1983 (in Chinese)[谭维翰、 闫珂柱 1999 物理学报 48 1983]

    [12]

    Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 77 33620

    [13]

    Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 78 43618

    [14]

    Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602

    [15]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 23602

    [16]

    Kittel C 1956 Introduction to Solid State Physics (2nd ed)(New York: John Wiley & Sons Inc.) p188

    [17]

    Cuiti C, Schwendimann P, Quattropani A 2003 Semicond. Sci. Techn. 18 S27

    [18]

    Shen X C 2002 Spectra and Optical Properties of Semiconductor (Beijing: Science Press) p604 (in Chinese)[沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第604页]

  • [1]

    Anderson M R, Mewes M O, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1996 Science 273 84

    [2]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [3]

    Imamoglu A, Ram R 1996 J. Phys. Lett. A 214 193

    [4]

    Loruovik Y E, Semielov A G, Vilangder M 2006 Theor. Exp. Phys. 84 176 (in Russian)

    [5]

    Loruovik Y E, Semielov A G 2007 Theor. Exp. Phys. 86 1007 (in Russian)

    [6]

    Baliti R, Hartwelt V, Snoke D 2007 Science 316 1007

    [7]

    Bonolowa N S, Noruvik Y Y 2008 Phys. Stat. Sol. 50 1496 (in Russian)

    [8]

    Yu X C, Mo Y 2004 Acta Phys. Sin. 53 4075 (in Chinese) [余学才、 莫 影 2004 物理学报 53 4075]

    [9]

    Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991 (in Chinese)[崔海涛、 王林成、 衣学喜 2004 物理学报 53 991]

    [10]

    Yu X C, Ye Y T, Cheng L 2006 Acta Phys. Sin. 55 551 (in Chinese)[余学才、 叶玉堂、 程 琳 2006 物理学报 55 551 ]

    [11]

    Tan W H, Yan K Z 1999 Acta Phys. Sin. 48 1983 (in Chinese)[谭维翰、 闫珂柱 1999 物理学报 48 1983]

    [12]

    Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 77 33620

    [13]

    Zhang J M, Liu W M, Zhou D L 2008 Phys. Rev. A 78 43618

    [14]

    Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602

    [15]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 23602

    [16]

    Kittel C 1956 Introduction to Solid State Physics (2nd ed)(New York: John Wiley & Sons Inc.) p188

    [17]

    Cuiti C, Schwendimann P, Quattropani A 2003 Semicond. Sci. Techn. 18 S27

    [18]

    Shen X C 2002 Spectra and Optical Properties of Semiconductor (Beijing: Science Press) p604 (in Chinese)[沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第604页]

计量
  • 文章访问数:  7013
  • PDF下载量:  838
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-18
  • 修回日期:  2010-07-19
  • 刊出日期:  2010-06-05

/

返回文章
返回