搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BeO高压相变和声子谱的第一性原理计算

原鹏飞 祝文军 徐济安 刘绍军 经福谦

引用本文:
Citation:

BeO高压相变和声子谱的第一性原理计算

原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦

High pressure phase transition and phonon-dispersion relations of BeO calculated by first-principles method

Yuan Peng-Fei, Zhu Wen-Jun, Xu Ji-An, Liu Shao-Jun, Jing Fu-Qian
PDF
导出引用
  • 采用第一性原理方法计算了BeO在零温时的高压相变和三种结构在零温零压时的声子谱.相变的计算表明,在122 GPa左右的压力下BeO会发生从纤锌矿(B4)结构到氯化钠(B1)结构的相变,而闪锌矿(B3)结构在零温零压下是一种可能的亚稳态结构.采用冷声子方法计算了这三种结构的BeO在零温零压下的声子谱.计算结果表明:B1结构在零温零压下是一种不稳定的结构;尽管B4结构和B3结构具有明显的相似性,仍然可以通过声子谱来很好的区分.最后根据准简谐近似理论计算得到了BeO的高温高压相图.
    The high pressure phase transition at zero temperature and the phonon-dispersion relations at zero temperatue and zero pressue of BeO have been studied by a first-principles method. The results show that a phase transition from wurtzite structure (B4) to cubic sodium chloride structure (B1) happens at about 122 GPa and the zinc blende phase (B3) is of a meta-stable structure at zero temperature and zero pressure. The phonon-dispersion relations of B1, B3 and B4 phase BeO at zero temperature and zero pressure are investigated by the frozen phonon method. The calculations show that at zero temperature and zero pressure B1 phase is an unstable phase and B4 and B3 phases are of two very simliar structure, but they are still distinguishable from each other by their phonon-dispersion relations. Finally, the phase diagrams of BeO at high temperature and high pressure are studied.
    • 基金项目: 冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C67010106ZS75)、中国工程物理研究院科学技术发展基金(批准号:2007A01004)和国家自然科学基金(批准号:10776022,10576004)资助的课题.
    [1]

    Hazen R M, Finger L W 1986 J. Appl. Phys. 59 3728

    [2]

    Weast R C 1986 Handbook of Chemistry and Physics (67th ed) (West Palm Beach: CRC Press)

    [3]

    Slack G A, Austerman S B 1971 J. Appl. Phys. 42 4713

    [4]

    Shinozaki S S, Hangad J, Maeda K 1988 Electronic Packing Materials Science Ⅲ (Pittsburgh: Materials Research Society) p89

    [5]

    Roessler D M, Walker W C, Loh E 1969 J. Phys. Chem. Solids 30 157

    [6]

    Joshi K B, Jain R, Pandya R K, Ahuja B L, Sharma B K 1999 J. Chem. Phys. 111 163

    [7]

    Phillips J C 1973 Bonds and Bands in Semiconductors (New York: Academic)

    [8]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [9]

    Phillips J C 1971 Phys. Rev. Lett. 27 1197

    [10]

    Chang K J, Froyen S, Cohen M L 1983 J. Phys. C 16 3475

    [11]

    Jephcoat A P, Hemley R J, Mao H K, Cohen R E, Mehl M J 1988 Phys. Rev. B 37 4727

    [12]

    Van Camp P E, Van Doren V E 1996 J. Phys.: Condens. Matter 8 3385

    [13]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965

    [14]

    Park C J, Lee S G, Ko Y J, Chang K J 1999 Phys. Rev. B 59 13501

    [15]

    Cai Y X, Wu S T, Xu R, Yu J 2006 Phys. Rev. B 73 184104

    [16]

    Amrani B, Haddan F E, Akbarzadeh H 2007 J. Phys.: Condens. Matter 19 436216

    [17]

    Mori Y, Ikai T, Takarabe K 2003 Photon Factory Activity Report 20 B215

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. 13 5188

    [25]

    Ostheller G L, Schmunk R E, Brugger R M, Kearney R J 1968 Neutron Inelastic Scattering (Vienna: IAEA) p315

    [26]

    Brugger R M, Strong K A, Carpenter J M 1966 J. Phys. Chem. Solids 28 249

    [27]

    Arguello C A, Rousseau D L, Porto S P S 1968 Phys. Rev. 181 1351

    [28]

    Loh E 1968 Phys. Rev. 166 673

    [29]

    Munima B S, Subhradip G 2008 J. Phys.: Condens. Matter 20 395201

  • [1]

    Hazen R M, Finger L W 1986 J. Appl. Phys. 59 3728

    [2]

    Weast R C 1986 Handbook of Chemistry and Physics (67th ed) (West Palm Beach: CRC Press)

    [3]

    Slack G A, Austerman S B 1971 J. Appl. Phys. 42 4713

    [4]

    Shinozaki S S, Hangad J, Maeda K 1988 Electronic Packing Materials Science Ⅲ (Pittsburgh: Materials Research Society) p89

    [5]

    Roessler D M, Walker W C, Loh E 1969 J. Phys. Chem. Solids 30 157

    [6]

    Joshi K B, Jain R, Pandya R K, Ahuja B L, Sharma B K 1999 J. Chem. Phys. 111 163

    [7]

    Phillips J C 1973 Bonds and Bands in Semiconductors (New York: Academic)

    [8]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [9]

    Phillips J C 1971 Phys. Rev. Lett. 27 1197

    [10]

    Chang K J, Froyen S, Cohen M L 1983 J. Phys. C 16 3475

    [11]

    Jephcoat A P, Hemley R J, Mao H K, Cohen R E, Mehl M J 1988 Phys. Rev. B 37 4727

    [12]

    Van Camp P E, Van Doren V E 1996 J. Phys.: Condens. Matter 8 3385

    [13]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965

    [14]

    Park C J, Lee S G, Ko Y J, Chang K J 1999 Phys. Rev. B 59 13501

    [15]

    Cai Y X, Wu S T, Xu R, Yu J 2006 Phys. Rev. B 73 184104

    [16]

    Amrani B, Haddan F E, Akbarzadeh H 2007 J. Phys.: Condens. Matter 19 436216

    [17]

    Mori Y, Ikai T, Takarabe K 2003 Photon Factory Activity Report 20 B215

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [19]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. 13 5188

    [25]

    Ostheller G L, Schmunk R E, Brugger R M, Kearney R J 1968 Neutron Inelastic Scattering (Vienna: IAEA) p315

    [26]

    Brugger R M, Strong K A, Carpenter J M 1966 J. Phys. Chem. Solids 28 249

    [27]

    Arguello C A, Rousseau D L, Porto S P S 1968 Phys. Rev. 181 1351

    [28]

    Loh E 1968 Phys. Rev. 166 673

    [29]

    Munima B S, Subhradip G 2008 J. Phys.: Condens. Matter 20 395201

  • [1] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦. 物理学报, 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [3] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究. 物理学报, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [4] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [5] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为. 物理学报, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [6] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [7] 田文, 袁鹏飞, 禹卓良, 陶斌凯, 侯森耀, 叶聪, 张振华. 掺杂六角形石墨烯电子输运特性的研究. 物理学报, 2015, 64(4): 046102. doi: 10.7498/aps.64.046102
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [10] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [12] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [13] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移. 物理学报, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [14] 金硕, 孙璐. 带有碳杂质的钨中氢稳定性的第一性原理研究. 物理学报, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [15] 顾雄, 高尚鹏. TiN多型体高压相变的第一性原理计算. 物理学报, 2011, 60(5): 057102. doi: 10.7498/aps.60.057102
    [16] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [17] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱. 物理学报, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [18] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [19] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算. 物理学报, 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [20] 吕梦雅, 陈洲文, 李立新, 刘日平, 王文魁. 3C-SiC高压相变的理论研究. 物理学报, 2006, 55(7): 3576-3580. doi: 10.7498/aps.55.3576
计量
  • 文章访问数:  8894
  • PDF下载量:  1104
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-30
  • 修回日期:  2010-04-26
  • 刊出日期:  2010-06-05

/

返回文章
返回