搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保护气对切割弧特性影响的模拟研究

周前红 郭文康 李辉

引用本文:
Citation:

保护气对切割弧特性影响的模拟研究

周前红, 郭文康, 李辉

Numerical simulation on the effect of shielding gas on the plasma cutting arc

Li Hui, Zhou Qian-Hong, Guo Wen-Kang
PDF
导出引用
  • 通过比较两种不同结构切割炬所产生的等离子体流场,发现保护气对等离子体的温度和速度分布影响很小.垂直保护气在切割炬喷口形成阻碍作用,造成切割炬内的压强有所升高,但是增加不大.两种结构保护气对切割弧的影响只是在炬喷口外的激波附近.加入保护气后激波的强度会减弱.相对于没有保护气的情况,保护气增加冷却作用,弧电压会略有升高.当改变保护气的成分时,发现弧柱区的氧气含量不受影响,所以保护气成分的改变不会影响到弧电压.计算发现轴线处氧气和周围气体的混合很少,在喷口下游10mm处,氧气的摩尔分数仍在90%以上.
    By comparing two diffierent torch geometries, it was found that the shielding flow has no significant effect on plasma velocity and temperature,except in the shock wave region. The shielding flow decreases the shock wave, and increases the arc voltage due to cooling. In the impinging geometry, shielding flow will crash the plasma jet after the nozzle exit and slightly increase the pressure in the torch. It was also shown that the component of shielding gas has no significant effect on plasma cuttingarc. The mole fraction of oxygen decreases very slowly along the axis and is still more than 90% at 10 mm downstream the nozzle exit.
    [1]

    Gage R M 1957 U. S. Patent 2806124

    [2]

    Nemchinsky V A, Severance W S 2006 J. Phys. D: Appl. Phys. 39 423

    [3]

    Ramakrishnan S, Rogozinski M W 1997 J. Phys. D: Appl. Phys. 30 636

    [4]

    Ramakrishnan S, Gershenzon M, Polivka F, Kearny T N, Rogozinsky M W 1997 IEEE Trans. Plasma Sci. 25 937

    [5]

    Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A, Calderon M A G 1999 J. Phys. D: Appl. Phys. 32 2181

    [6]

    Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, Delzenne M 2002 J. Phys. D: Appl. Phys. 35 115

    [7]

    Freton P, Gonzalez J J, Peyret F C, Glezes A 2003 J. Phys. D: Appl. Phys. 36 1269

    [8]

    Girard L, Teulet Ph, Raza-nimanana M, Gleizes A, Camy-Peyret F, Ballot E, Richard F 2006 J. Phys. D: Appl. Phys. 39 1543

    [9]

    Peters J, Yin F, Borges C F M, Heberlein J, Hackett C 2005 J. Phys. D: Appl. Phys. 38 1781

    [10]

    Peters J, Heberlein J, Lindsay J 2007 J. Phys. D: Appl. Phys. 40 3960

    [11]

    Nemchinsky V A, Showalter M S 2003 J. Phys. D: Appl. Phys. 36 704

    [12]

    Peters J, Bartlett B, Lindsay J, Heberlein J 2008 Plasma Chem. Plasma Process 28 331

    [13]

    Bini R, Colosimo B M, Kutlu A E, Monno M 2008 J. Mater. Process Tech. 196 345

    [14]

    Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A, Calderon M A G 1999 IEEE Trans. Plasma Sci. 27 264

    [15]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow. (New York: McGraw-Hill)

    [16]

    Ghorui S, Heberlein J V R, Pfender E 2007 J. Phys. D: Appl. Phys. 40 1966

    [17]

    Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M 2008 IEEE Trans. Plasma Sci. 36 389

    [18]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 015210

    [19]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2008 Plasma Chem. Plasma Process 6 729

    [20]

    Zhou Q H, Yin H T, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 095208

    [21]

    Guo S F, Zhou Q H, Guo W K, Xu P 2010 Plasma Chem. Plasma Process 30 121

    [22]

    Naghizadeh-Kashani Y, Cressault Y, Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925

    [23]

    Murphy A B 1995 Plasma Chem. Plasma Process 15 279

    [24]

    Murphy A B 1994 Plasma Chem. Plasma Process 14 451

    [25]

    Fluent Inc. 2001 FLUENT Users Guide

    [26]

    Yakhot V, Orszag S A 1986 Journal of Scientic Computing 1 1

    [27]

    Jayatilleke C 1969 Prog. Heat Mass Transfer 1 193

    [28]

    Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J 1995 Computers Fluids 24 227

    [29]

    Reynolds W C 1987 Lecture Notes for von Karman Institute Agard Report No. 755

    [30]

    Launder B E 1989 Inter. J. Heat Fluid Flow 10 282

    [31]

    Launder B E, Reece G J, Rodi W 1975 J. Fluid Mech. 68 537

    [32]

    Lien F S, Leschziner M A 1994 Computers and Fluids 23 983

    [33]

    Yuan X Q, Li H, Zhao T Z, Wang F, Guo W K, Xu P 2004 Acta Phys. Sin. 53 788 (in Chinese) [袁行球、李 辉、 赵太泽、 王 飞、 郭文康、 须 平2004 物理学报53 788]

    [34]

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806(in Chinese) 〖袁行球、李 辉、 赵太泽、 王 飞、 俞国扬、 郭文康、 须 平2004 物理学报53 3806]

  • [1]

    Gage R M 1957 U. S. Patent 2806124

    [2]

    Nemchinsky V A, Severance W S 2006 J. Phys. D: Appl. Phys. 39 423

    [3]

    Ramakrishnan S, Rogozinski M W 1997 J. Phys. D: Appl. Phys. 30 636

    [4]

    Ramakrishnan S, Gershenzon M, Polivka F, Kearny T N, Rogozinsky M W 1997 IEEE Trans. Plasma Sci. 25 937

    [5]

    Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A, Calderon M A G 1999 J. Phys. D: Appl. Phys. 32 2181

    [6]

    Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, Delzenne M 2002 J. Phys. D: Appl. Phys. 35 115

    [7]

    Freton P, Gonzalez J J, Peyret F C, Glezes A 2003 J. Phys. D: Appl. Phys. 36 1269

    [8]

    Girard L, Teulet Ph, Raza-nimanana M, Gleizes A, Camy-Peyret F, Ballot E, Richard F 2006 J. Phys. D: Appl. Phys. 39 1543

    [9]

    Peters J, Yin F, Borges C F M, Heberlein J, Hackett C 2005 J. Phys. D: Appl. Phys. 38 1781

    [10]

    Peters J, Heberlein J, Lindsay J 2007 J. Phys. D: Appl. Phys. 40 3960

    [11]

    Nemchinsky V A, Showalter M S 2003 J. Phys. D: Appl. Phys. 36 704

    [12]

    Peters J, Bartlett B, Lindsay J, Heberlein J 2008 Plasma Chem. Plasma Process 28 331

    [13]

    Bini R, Colosimo B M, Kutlu A E, Monno M 2008 J. Mater. Process Tech. 196 345

    [14]

    Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A, Calderon M A G 1999 IEEE Trans. Plasma Sci. 27 264

    [15]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow. (New York: McGraw-Hill)

    [16]

    Ghorui S, Heberlein J V R, Pfender E 2007 J. Phys. D: Appl. Phys. 40 1966

    [17]

    Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M 2008 IEEE Trans. Plasma Sci. 36 389

    [18]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 015210

    [19]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2008 Plasma Chem. Plasma Process 6 729

    [20]

    Zhou Q H, Yin H T, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 095208

    [21]

    Guo S F, Zhou Q H, Guo W K, Xu P 2010 Plasma Chem. Plasma Process 30 121

    [22]

    Naghizadeh-Kashani Y, Cressault Y, Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925

    [23]

    Murphy A B 1995 Plasma Chem. Plasma Process 15 279

    [24]

    Murphy A B 1994 Plasma Chem. Plasma Process 14 451

    [25]

    Fluent Inc. 2001 FLUENT Users Guide

    [26]

    Yakhot V, Orszag S A 1986 Journal of Scientic Computing 1 1

    [27]

    Jayatilleke C 1969 Prog. Heat Mass Transfer 1 193

    [28]

    Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J 1995 Computers Fluids 24 227

    [29]

    Reynolds W C 1987 Lecture Notes for von Karman Institute Agard Report No. 755

    [30]

    Launder B E 1989 Inter. J. Heat Fluid Flow 10 282

    [31]

    Launder B E, Reece G J, Rodi W 1975 J. Fluid Mech. 68 537

    [32]

    Lien F S, Leschziner M A 1994 Computers and Fluids 23 983

    [33]

    Yuan X Q, Li H, Zhao T Z, Wang F, Guo W K, Xu P 2004 Acta Phys. Sin. 53 788 (in Chinese) [袁行球、李 辉、 赵太泽、 王 飞、 郭文康、 须 平2004 物理学报53 788]

    [34]

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806(in Chinese) 〖袁行球、李 辉、 赵太泽、 王 飞、 俞国扬、 郭文康、 须 平2004 物理学报53 3806]

计量
  • 文章访问数:  6450
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-03
  • 修回日期:  2010-03-31
  • 刊出日期:  2011-01-05

/

返回文章
返回