搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲磁控溅射法制备单斜相氧化铒涂层

李新连 吴平 邱宏 陈森 宋斌斌

引用本文:
Citation:

脉冲磁控溅射法制备单斜相氧化铒涂层

李新连, 吴平, 邱宏, 陈森, 宋斌斌

Monoclinic phase of erbium oxide coatings fabricated by pulsed magnetron sputtering

Li Xin-Lian, Wu Ping, Qiu Hong, Chen Sen, Song Bin-Bin
PDF
导出引用
  • 用中频脉冲反应磁控溅射法,在溅射功率为78 W,93 W和124 W以及衬底温度分别为室温,500 ℃及677 ℃下制备了氧化铒涂层.采用原子力显微镜、纳米压痕、X射线衍射和掠入射X射线衍射法研究了涂层的形貌、力学性能及物相结构.测量了涂层的电学性能.结果显示,脉冲磁控溅射沉积氧化铒涂层具有较高的沉积速率.实验制备得到了单斜相结构的氧化铒涂层.提高溅射功率时,沉积速率从28 nm/min增大至68 nm/min,涂层的结晶质量显著下降.提高衬底温度至500 ℃和677 ℃时,单斜相衍射峰强度下降.分析认为
    Erbium oxide coatings were fabricated by midfrequency pulsed reactive magnetron sputtering by varying the deposition conditions with respect to the sputtering power from 78 W to 124 W and substrate temperature from room temperature to 677 ℃. Atomic force microscopy, nanoindentation, X-ray diffraction and grazing incidence X-ray diffraction were used to investigate the coatings’ surface morphology, mechanical properties and crystallization behaviors. Electrical properties of the coatings were also measured. Erbium oxide coatings fabricated by pulsed magnetron sputtering have high deposition rate, varying from 28 nm/min to 68nm/min. A monoclinic Er2O3 phase is obtained in the coatings. The crystalline quality of the coatings decreases with the increasing of the sputtering power. The diffraction intensity of monoclinic phase decreases as the substrate temperature was increased from room temperature to 500 ℃ and 677 ℃. It is believed that the high deposition rate and low substrate temperature could lead to the formation of the monoclinic Er2O3 coatings. The hardness and elastic modulus of the coatings deposited at substrate temperatures from room temperature to 677 ℃ vary from 11.9 GPa to 15.7 GPa and from 179 GPa to 225 GPa, respectively. The coatings deposited from room temperature to 677℃ all have high resistivity, varying from 1.5×1012 Ω ·cm to 3.1×1012 Ω ·cm, meeting the requirements of the insulating coatings in application to fusion reactor.
    [1]

    Liang J J, Chen W D, Wang Y Q, Chang Y, Wang Z G 2000 Chin. Phys. 9 0783

    [2]

    Miritello M, Lo Savio R, Piro A M, Franzò G, Priolo F, Lacona F, Bongiorno C 2006 J. Appl. Phys. 100 013502

    [3]

    Losurdo M, Giangregorio M M, Bruno G, Yang D X, Irene E A, Suvorova A A, Saunders M 2007 Appl. Phys. Lett. 91 091914

    [4]

    Singh M P, Thakur C S, Shalini K, Bhat N, Shivashankar S A 2003 Appl. Phys. Lett. 83 2889

    [5]

    Wong C P C, Salavy J F, Kim Y, Kirillov I, Rajendra Kumar E, Morley N B, Tanaka S, Wu Y C 2008 Fusion Eng. Des. 83 850

    [6]

    Chen H, Zhou T, Lü R, Yang Z, Wu Z, Xia D 2009 J. Nucl. Mater. 386-388 904

    [7]

    Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307-311 1344

    [8]

    Levchuk D, Levchuk S, Maier H, Bolt H, Suzuki A 2007 J. Nucl. Mater. 367-370 1033

    [9]

    Chikada T, Suzuki A, Yao Z Y, Sawada A, Terai T, Muroga T 2007 Fusion Eng. Des. 82 2572

    [10]

    Sawada A, Suzuki A, Terai T 2006 Fusion Eng. Des. 81 579

    [11]

    Yao Z Y, Suzuki A, Muroga T, Yeliseyeva O, Nagasaka T 2006 Fusion Eng. Des. 81 951

    [12]

    Adelhelm C, Pickert T, Balden M, Rasinski M, Plocinski T, Ziebert C, Koch F, Maier H 2009 Scripta Mater. 61 789

    [13]

    Tang M, Lu P, Valdez J A, Sickafus K E 2006 J. Appl. Phys. 99 063514

    [14]

    Adachi G Y, Imanaka N 1998 Chem. Rev. 98 1479

    [15]

    Guo Q X, Zhao Y S, Jiang C, Mao W L, Wang Z W, Zhang J Z, Wang Y J 2007 Inorg. Chem. 46 6164

    [16]

    Kelly P J, Henderson P S, Arnell R D, Roche G A, Carter D 2000 J. Vac. Sci. Technol. A 18 2890

    [17]

    Sproul W D 1998 Vacuum 51 641

    [18]

    Ye Z Y, Zhang Q Y 2001 Chin. Phys. 10 0329

    [19]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 0297(in Chinese)[张庆瑜、 马腾才、 潘正瑛、 汤家镛 2000 物理学报 49 0297]

    [20]

    Wu F M, Shi J Q, Wu Z Q 2001 Acta Phys. sin. 50 1555(in Chinese)[吴锋民、 施建青、 吴自勤 2001 物理学报 50 1555]

    [21]

    Lan W, Liu X Q, Huang C M, Tang G M, Yang Y, Wang Y Y 2006 Acta Phys. Sin. 55 0748(in Chinese)[兰 伟、 刘雪芹、 黄春明、 唐国梅、 杨 扬、 王印月 2006 物理学报 55 0748]

    [22]
  • [1]

    Liang J J, Chen W D, Wang Y Q, Chang Y, Wang Z G 2000 Chin. Phys. 9 0783

    [2]

    Miritello M, Lo Savio R, Piro A M, Franzò G, Priolo F, Lacona F, Bongiorno C 2006 J. Appl. Phys. 100 013502

    [3]

    Losurdo M, Giangregorio M M, Bruno G, Yang D X, Irene E A, Suvorova A A, Saunders M 2007 Appl. Phys. Lett. 91 091914

    [4]

    Singh M P, Thakur C S, Shalini K, Bhat N, Shivashankar S A 2003 Appl. Phys. Lett. 83 2889

    [5]

    Wong C P C, Salavy J F, Kim Y, Kirillov I, Rajendra Kumar E, Morley N B, Tanaka S, Wu Y C 2008 Fusion Eng. Des. 83 850

    [6]

    Chen H, Zhou T, Lü R, Yang Z, Wu Z, Xia D 2009 J. Nucl. Mater. 386-388 904

    [7]

    Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307-311 1344

    [8]

    Levchuk D, Levchuk S, Maier H, Bolt H, Suzuki A 2007 J. Nucl. Mater. 367-370 1033

    [9]

    Chikada T, Suzuki A, Yao Z Y, Sawada A, Terai T, Muroga T 2007 Fusion Eng. Des. 82 2572

    [10]

    Sawada A, Suzuki A, Terai T 2006 Fusion Eng. Des. 81 579

    [11]

    Yao Z Y, Suzuki A, Muroga T, Yeliseyeva O, Nagasaka T 2006 Fusion Eng. Des. 81 951

    [12]

    Adelhelm C, Pickert T, Balden M, Rasinski M, Plocinski T, Ziebert C, Koch F, Maier H 2009 Scripta Mater. 61 789

    [13]

    Tang M, Lu P, Valdez J A, Sickafus K E 2006 J. Appl. Phys. 99 063514

    [14]

    Adachi G Y, Imanaka N 1998 Chem. Rev. 98 1479

    [15]

    Guo Q X, Zhao Y S, Jiang C, Mao W L, Wang Z W, Zhang J Z, Wang Y J 2007 Inorg. Chem. 46 6164

    [16]

    Kelly P J, Henderson P S, Arnell R D, Roche G A, Carter D 2000 J. Vac. Sci. Technol. A 18 2890

    [17]

    Sproul W D 1998 Vacuum 51 641

    [18]

    Ye Z Y, Zhang Q Y 2001 Chin. Phys. 10 0329

    [19]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 0297(in Chinese)[张庆瑜、 马腾才、 潘正瑛、 汤家镛 2000 物理学报 49 0297]

    [20]

    Wu F M, Shi J Q, Wu Z Q 2001 Acta Phys. sin. 50 1555(in Chinese)[吴锋民、 施建青、 吴自勤 2001 物理学报 50 1555]

    [21]

    Lan W, Liu X Q, Huang C M, Tang G M, Yang Y, Wang Y Y 2006 Acta Phys. Sin. 55 0748(in Chinese)[兰 伟、 刘雪芹、 黄春明、 唐国梅、 杨 扬、 王印月 2006 物理学报 55 0748]

    [22]
  • [1] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性. 物理学报, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [2] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [3] 朱子尧, 刘向鑫, 蒋复国, 张跃. 磁控溅射Cl掺杂CdTe薄膜的孪晶结构与电学性质. 物理学报, 2017, 66(8): 088101. doi: 10.7498/aps.66.088101
    [4] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [5] 吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪. 高压耦合高功率脉冲磁控溅射的增强放电效应. 物理学报, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [6] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征. 物理学报, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [7] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [8] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应. 物理学报, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [9] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [10] 陈超, 冀勇, 郜小勇, 赵孟珂, 马姣民, 张增院, 卢景霄. 直流脉冲磁控反应溅射技术制备掺铝氧化锌薄膜的研究. 物理学报, 2012, 61(3): 036104. doi: 10.7498/aps.61.036104
    [11] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [12] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [13] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [14] 陈晓波, 廖红波, 张春林, 于春雷, 潘伟, 胡丽丽, 吴正龙. 掺铒的纳米相氟氧化物玻璃陶瓷的多光子红外量子剪裁. 物理学报, 2010, 59(7): 5091-5099. doi: 10.7498/aps.59.5091
    [15] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [16] 袁放成, 冉广照, 陈源, 张伯蕊, 乔永平, 傅济时, 秦国刚, 马振昌, 宗婉华. 磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光. 物理学报, 2001, 50(12): 2487-2491. doi: 10.7498/aps.50.2487
    [17] 雷红兵, 杨沁清, 王启明. 掺铒硅发光的晶场分裂. 物理学报, 1998, 47(7): 1201-1206. doi: 10.7498/aps.47.1201
    [18] 孙军强, 黄德修, 李再光. 掺铒光纤激光器的自持脉冲. 物理学报, 1996, 45(6): 960-965. doi: 10.7498/aps.45.960
    [19] 江伟林, 王瑞兰, 朱沛然, 王长安, 徐天冰, 李宏成, 翟永亮, 任孟眉, 周俊思. 直流磁控溅射YBCO非晶薄膜的卢瑟福背散射研究. 物理学报, 1994, 43(4): 660-666. doi: 10.7498/aps.43.660
    [20] 余梅, 尤广建, 周增均, 罗惠临. 溅射氧化铁薄膜矫顽力的研究. 物理学报, 1987, 36(5): 562-569. doi: 10.7498/aps.36.562
计量
  • 文章访问数:  7295
  • PDF下载量:  1895
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-07
  • 修回日期:  2010-06-25
  • 刊出日期:  2011-03-15

/

返回文章
返回