搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响

於黄忠 温源鑫

引用本文:
Citation:

不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响

於黄忠, 温源鑫

Influence of the thickness and cathode material on the performance of the polymer solar cell

Yu Huang-Zhong, Wen Yuan-Xin
PDF
导出引用
  • 以MEH-PPV(poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene))为电子给体材料, PCBM(1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61)为电子受体材料, 制成了共混体系太阳电池.研究了不同厚度活性层对太阳电池性能的影响.结果表明, 活性层厚度为100 nm时,太阳电池具有最佳性能.活性层厚度的增加,增大了光生电荷的复合,减少了太阳电池的填充因子,从而减少了太阳电
    The solar cells based on the blend of MEH-PPV(poly(2-methoxy-5-(2'-ethylhexyloxy) -1,4-phenylene vinylene)) and PCBM (1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61) as acceptor were fabricated. The thickness dependence of the performance of solar cells was studied. The results showed that the solar cells with active layer thickness of 100 nm have the best performance. Increasing device thickness resulted in an increase of charge recombination and a lowering of the fill factor, which leads to lower overall power conversion efficiency. The reasons for the S-shaped kink in the thick device were also analyzed. Influence of the cathode material on the performance of the devices was discussed. The results showed that the solar cells using LiF/Al as the negative electrode formed ohmic contacts at the cathode and anode, which favored the collecting of the charge, increased the transmission of the charge and the absorption of solar light, and improved the performance of the solar cell.
    • 基金项目: 中国科学院可再生能源与天然气水合物重点实验室(批准号:0907K5),华南理工大学亚热带建筑科学国家重点实验室开放研究项目(批准号:2010KB20)学生研究计划项目(批准号:X2lXD210632W)资助的课题.
    [1]

    Yu G, Gao J, Hummelen C, Wudl F, Heeger A J 1995 Science 270 1789

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [4]

    Wang E G, Wang L, Lan L F, Peng J B, Cao Y 2008 Appl. Phys. Lett. 92 033307

    [5]

    Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1

    [6]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

    [7]

    Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Research Letters 4 674

    [8]

    Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143

    [9]

    Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601

    [10]

    Sang G Y, Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302

    [11]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136

    [12]

    You H L, Zhang C F 2009 Chin. Phys. B 18 2096

    [13]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese)[於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [14]

    Zhang Y, de B B, Blom P W M 2010 Phys. Rev. B 81 085201

    [15]

    Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 物理学报 59 2131]

    [16]

    Yu H Z, Peng J B 2008 Organic Electronic 9 1022

    [17]

    Zheng L P, Zhou Q M, Deng X Y, Yuan M, Yu G, Cao Y 2004 J. Phys. Chem. B 108 11921

    [18]

    Tan Z A, Yang C H, Zhou E J, Wang X, Li Y F 2007 Appl. Phys. Lett. 91 023509

    [19]

    Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [20]

    Shirland F 1966 Adv. Energy. Conversion 6 201

    [21]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [22]

    Kumar A, Sista S, Yang Y J 2009 Appl. Phys. 105 094512

    [23]

    Glatthaar M, Riede M, Keegan N, Sylvester-Hvid K, Zimmermann B, Niggemann M, Hinsch A, Gombert A 2007 Sol. Energy Mater. Sol. Cells 91 390

    [24]

    Gadisa A, Svensson M, Mats R, Inganas O 2004 Appl. Phys. Lett. 84 1609

    [25]

    Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L, Hummelen J C 2001 Adv. Funct. Mater. 11 374

    [26]

    Liu J, Shi Y J, Yang Y 2001 Adv. Funct. Mater. 11 420

    [27]

    Mihailetchi V D, Blom P W M, Hummelen J C,Rispens M T 2003 J. Appl. Phys. 94 6849

    [28]

    Bassler H 1993 Phys. Status Solidi 175 15

    [29]

    Veenstra S C, Heeres A, Hadziioannou G, Sawatzky G A, Jonkman H T 2002 Appl. Phys. A: Mater. Sci. Process 75 661

  • [1]

    Yu G, Gao J, Hummelen C, Wudl F, Heeger A J 1995 Science 270 1789

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [4]

    Wang E G, Wang L, Lan L F, Peng J B, Cao Y 2008 Appl. Phys. Lett. 92 033307

    [5]

    Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1

    [6]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

    [7]

    Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Research Letters 4 674

    [8]

    Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143

    [9]

    Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601

    [10]

    Sang G Y, Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302

    [11]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136

    [12]

    You H L, Zhang C F 2009 Chin. Phys. B 18 2096

    [13]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese)[於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [14]

    Zhang Y, de B B, Blom P W M 2010 Phys. Rev. B 81 085201

    [15]

    Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 物理学报 59 2131]

    [16]

    Yu H Z, Peng J B 2008 Organic Electronic 9 1022

    [17]

    Zheng L P, Zhou Q M, Deng X Y, Yuan M, Yu G, Cao Y 2004 J. Phys. Chem. B 108 11921

    [18]

    Tan Z A, Yang C H, Zhou E J, Wang X, Li Y F 2007 Appl. Phys. Lett. 91 023509

    [19]

    Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [20]

    Shirland F 1966 Adv. Energy. Conversion 6 201

    [21]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [22]

    Kumar A, Sista S, Yang Y J 2009 Appl. Phys. 105 094512

    [23]

    Glatthaar M, Riede M, Keegan N, Sylvester-Hvid K, Zimmermann B, Niggemann M, Hinsch A, Gombert A 2007 Sol. Energy Mater. Sol. Cells 91 390

    [24]

    Gadisa A, Svensson M, Mats R, Inganas O 2004 Appl. Phys. Lett. 84 1609

    [25]

    Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L, Hummelen J C 2001 Adv. Funct. Mater. 11 374

    [26]

    Liu J, Shi Y J, Yang Y 2001 Adv. Funct. Mater. 11 420

    [27]

    Mihailetchi V D, Blom P W M, Hummelen J C,Rispens M T 2003 J. Appl. Phys. 94 6849

    [28]

    Bassler H 1993 Phys. Status Solidi 175 15

    [29]

    Veenstra S C, Heeres A, Hadziioannou G, Sawatzky G A, Jonkman H T 2002 Appl. Phys. A: Mater. Sci. Process 75 661

  • [1] 韩帅, 郭秋卜, 陆雅翔, 陈立泉, 胡勇胜. 低温水系碱金属离子电池的研究进展. 物理学报, 2023, 72(7): 070702. doi: 10.7498/aps.72.20230024
    [2] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [5] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [6] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [7] 阳喜元, 张晋平, 吴玉蓉, 刘福生. B2-NiAl纳米薄膜厚度对其弹性性能影响的模拟研究. 物理学报, 2015, 64(1): 016803. doi: 10.7498/aps.64.016803
    [8] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [9] 路飞平, 李建丰, 孙硕. 功能层厚度对叠层有机电致发光器件出光性能影响的数值研究. 物理学报, 2013, 62(24): 247201. doi: 10.7498/aps.62.247201
    [10] 田晶, 杨鑫, 刘尚军, 练晓娟, 陈金伟, 王瑞林. 直流磁控溅射厚度对Cu(Inx,Ga1-x)Se2背接触Mo薄膜性能的影响. 物理学报, 2013, 62(11): 116801. doi: 10.7498/aps.62.116801
    [11] 吴宝山, 王琳琳, 汪咏梅, 马廷丽. 基于半经验模型对大面积染料敏化太阳电池性能影响因素的研究. 物理学报, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [12] 李蛟, 刘俊成, 高从堦. PEDOT:PSS薄膜的山梨醇掺杂对光电池性能的影响. 物理学报, 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [13] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究. 物理学报, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [15] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [16] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究. 物理学报, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [17] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [18] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [19] 於黄忠, 彭俊彪, 刘金成. MEH-PPV与TiO2共混体系太阳电池性能分析. 物理学报, 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [20] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
计量
  • 文章访问数:  7119
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-09
  • 修回日期:  2010-06-30
  • 刊出日期:  2011-03-15

/

返回文章
返回