搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KAg4I5-AgI复合体系的电导率研究

高韶华 王玉霞 王宏伟 袁帅

引用本文:
Citation:

KAg4I5-AgI复合体系的电导率研究

高韶华, 王玉霞, 王宏伟, 袁帅

Research on the conductivity of KAg4 I5-AgI composite

Gao Shao-Hua, Wang Yu-Xia, Wang Hong-Wei, Yuan Shuai
PDF
导出引用
  • 采用固相反应法将市购的AgI和KI按4.1 ∶1的摩尔组分配比,在避光干燥的条件下混合加热,制备出了KAg4I5 (10%AgI )复合体系.用X射线衍射谱、扫描电子显微镜、复阻抗谱、差示扫描量热等分析手段,对复合体系的结构、形貌、离子导电特性及相变温度进行了研究.结果发现,两相均为快离子导体的材料复合后,其复合体系的离子电导率比各自为纯相时都高,并且升降温-电导率曲线为迟滞回线,AgI的升降温相变温度分别滞后5和10 ℃.用界面间相互作用、空间电荷模型及Gou
    KAg4I5(10%AgI) composite is prepared by the solid-state reaction method in the dark and dry conditions, and its structure, morphology, ion conductivity properties, and phase transition temperature are studied by X-ray diffraction, scanning electron microscope, impedance spectroscopy, differential scanning calorimetry and other analytical tools. The results show that when the two phases (AgI and KAg4I5 phases) in the composite are both fast ionic conductor phases, ionic conductivity of composite is higher than that of the single phase, and the heating and cooling of the conductivity curves form a hysteresis loop.During heating and cooling, AgI phase transition temperature lags 5 and 10 ℃ respectively.We use the interaction interface, the interface stress phase and Gouy-Chapman model to analyze the mechanism for the improved conductivity of this composite and phase transition temperature change when the two phases are both the fast ionic conductive.
    • 基金项目: 国家自然科学基金(批准号:50672095)资助的课题.
    [1]

    Liu L F, Lee S W, Li J B, Alexe M, Rao G H, Zhou W Y, Lee J J, Lee W, Gsele U 2008 Nanotechnology 19 495706

    [2]
    [3]

    Lee J S, Adams S, Maier J 2000 Solid State Ion. 136137 1261

    [4]
    [5]

    Albert S, Frolet N, Yot P, Pradel A, Ribes M 2006 Solid State Ion. 177 3009

    [6]

    Shahi K, Wagner J B 1980 Appl. Phys. Lett. 37 15

    [7]
    [8]

    Yamada H, Bhattacharyya A J, Maier J 2006 Adv. Funct. Mater. 16 525

    [9]
    [10]

    Sata N, Eberman K, Eberl K, Maier J 2000 Nature 408 21

    [11]
    [12]

    Maier J 1995 Prog. Solid State Chem. 23 171

    [13]
    [14]
    [15]

    Maier J 2005 Nature Mater. 4 805

    [16]

    Maier J 2004 Solid State Ion. 175 7

    [17]
    [18]

    Zimmer F, Ballone P, Maier J, Parrinello M 2000 J. Phys. Chem. 112 14

    [19]
    [20]
    [21]

    Jamnik J, Maier J, Pejovnik S 1995 Solid State Ion. 75 51

    [22]

    Uvarov N F 2007 Russ. Chem. Rev. 76(5) 415

    [23]
    [24]
    [25]

    Maier J 1995 Solid State Ion. 75 139

    [26]

    Guo X X, Matei I, Jamnik J, Lee J S, Maier J 2007 Phys. Rev. B 76 125429

    [27]
    [28]
    [29]

    Guo X X, Maier J 2009 Adv. Funct. Mater. 19 96

    [30]

    Saito Y, Maier J 1996 Solid State Ion. 8688 581

    [31]
    [32]
    [33]

    Song Q G, Jiang E Y 2007 Acta Phys. Sin. 57 1827(in Chinese)[宋庆功、姜恩永 2007 物理学报 57 1827]

    [34]
    [35]

    Uvarov N F, Vaněk P, Savinov M, Petzelt J 2000 Solid State Ion. 127 253

    [36]
    [37]

    Uvarov N F, Vaněk P, Savinov M, Petzelt J 2000 J. Mater. Synth Proc. 8 5

    [38]
    [39]

    Maier J 2001 Chem. Eur. J. 7 22

    [40]

    Liang C H, Kazuya T, Hasegawa T, Aono M, Iyi N 2007 J. Appl. Phys. 102 124308

    [41]
    [42]

    Martinie B, Troccaz M, Claudy P, Letoffe J 1987 J. Phys. Chem. Solids 48 943

    [43]
    [44]

    Lajzerowicz J 1981 Ferroelectrics 35 219

    [45]
  • [1]

    Liu L F, Lee S W, Li J B, Alexe M, Rao G H, Zhou W Y, Lee J J, Lee W, Gsele U 2008 Nanotechnology 19 495706

    [2]
    [3]

    Lee J S, Adams S, Maier J 2000 Solid State Ion. 136137 1261

    [4]
    [5]

    Albert S, Frolet N, Yot P, Pradel A, Ribes M 2006 Solid State Ion. 177 3009

    [6]

    Shahi K, Wagner J B 1980 Appl. Phys. Lett. 37 15

    [7]
    [8]

    Yamada H, Bhattacharyya A J, Maier J 2006 Adv. Funct. Mater. 16 525

    [9]
    [10]

    Sata N, Eberman K, Eberl K, Maier J 2000 Nature 408 21

    [11]
    [12]

    Maier J 1995 Prog. Solid State Chem. 23 171

    [13]
    [14]
    [15]

    Maier J 2005 Nature Mater. 4 805

    [16]

    Maier J 2004 Solid State Ion. 175 7

    [17]
    [18]

    Zimmer F, Ballone P, Maier J, Parrinello M 2000 J. Phys. Chem. 112 14

    [19]
    [20]
    [21]

    Jamnik J, Maier J, Pejovnik S 1995 Solid State Ion. 75 51

    [22]

    Uvarov N F 2007 Russ. Chem. Rev. 76(5) 415

    [23]
    [24]
    [25]

    Maier J 1995 Solid State Ion. 75 139

    [26]

    Guo X X, Matei I, Jamnik J, Lee J S, Maier J 2007 Phys. Rev. B 76 125429

    [27]
    [28]
    [29]

    Guo X X, Maier J 2009 Adv. Funct. Mater. 19 96

    [30]

    Saito Y, Maier J 1996 Solid State Ion. 8688 581

    [31]
    [32]
    [33]

    Song Q G, Jiang E Y 2007 Acta Phys. Sin. 57 1827(in Chinese)[宋庆功、姜恩永 2007 物理学报 57 1827]

    [34]
    [35]

    Uvarov N F, Vaněk P, Savinov M, Petzelt J 2000 Solid State Ion. 127 253

    [36]
    [37]

    Uvarov N F, Vaněk P, Savinov M, Petzelt J 2000 J. Mater. Synth Proc. 8 5

    [38]
    [39]

    Maier J 2001 Chem. Eur. J. 7 22

    [40]

    Liang C H, Kazuya T, Hasegawa T, Aono M, Iyi N 2007 J. Appl. Phys. 102 124308

    [41]
    [42]

    Martinie B, Troccaz M, Claudy P, Letoffe J 1987 J. Phys. Chem. Solids 48 943

    [43]
    [44]

    Lajzerowicz J 1981 Ferroelectrics 35 219

    [45]
计量
  • 文章访问数:  6242
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-28
  • 修回日期:  2011-02-14
  • 刊出日期:  2011-04-05

/

返回文章
返回