搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然杂质对黄铁矿的电子结构及催化活性的影响

李玉琼 陈建华 郭进

引用本文:
Citation:

天然杂质对黄铁矿的电子结构及催化活性的影响

李玉琼, 陈建华, 郭进

Influence of natural impurity on electronic structure and catalytic activity of pyrite

Guo Jin, Li Yu-Qiong, Chen Jian-Hua
PDF
导出引用
  • 采用密度泛函理论和平面波赝势方法对含天然杂质黄铁矿的电子结构和光学性质进行了计算,并讨论了二十种天然杂质:钴、镍、砷、硒、碲、铜、金、银、钼、锌、铊、锡、钌、钯、铂、汞、镉、铋、铅和锑,对黄铁矿催化活性的影响.结果表明在过渡金属杂质中,杂质能级主要由它们的d轨道产生,而在主族金属及非金属杂质中,杂质能级主要由它们的s或p轨道产生.含铜、钼、砷、金、银或镍的黄铁矿对氧的还原的电催化能力增强.除锌、钼、钌、砷、锑、硒和碲外,其余杂质能增强黄铁矿表面俘获电子的能力,使光生电子和空穴复合的概率减小.光学性质计算表
    The electronic structures and the optical properties of pyrite containing twenty natural impurities, Co, Ni, As, Se, Te, Cu, Au, Ag, Mo, Zn, Tl, Sn, Ru, Pd, Pt, Hg, Cd, Bi, Pb and Sb, are investigated using the density functional theory and the plane wave pseudopotential method, and the catalytic activity of pyrite is discussed. For the transition metal-bearing pyrite, there are introduced impurity energy levels in the band contributing from impurity d orbital, while for the other metal and non-metal-bearing pyrite, the impurity energy levels are contributed from impurities s or p orbital. The presences of Cu, Mo, As, Au, Ag or Ni can enhance the electrocatalytic ability of pyrite to the oxygen reduction. All the impurities, except Zn, Mo, Ru, As, Sb, Se and Te, can enhance the ability of pyrite surface to capture electrons and hence the recombination rate of photoinduced electrons and holes wile be reduced. Calculations of optical properties indicate that Cd, Hg, Ru, Se, Te and Zn impurities each have small influence on the absorption band edge, while the presence of other impurity makes a red shift of absorption band edge of pyrite. Especially, the presences of Au and Ag impuritie increase the adsorption coefficient of pyrite by two orders of magnitude.
    • 基金项目: 国家自然科学基金(批准号:50864001)资助的课题.
    [1]

    Rand D A J 1977 J. Electroanal. Chem. 83 19

    [2]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 46 73

    [3]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 47 49

    [4]

    Kuznetsov P N, Sharypov V I, Kurochkin M G, Pospelova T M, Kornietz E D, Trukhacheva V A, Chumakov V G 1989 React. Kinet. Catal. Lett. 38 255

    [5]

    Baldwin R M, Vinciguerra S 1983 Fuel 62 498

    [6]

    Garg D, Givens E N 1982 Ind. Eng. Chem. Process Des. Dev. 21 113

    [7]

    Martino A, Wilcoxon J P, Kawola J S 1994 Energy Fuels 8 1289

    [8]

    Shi J X, Lu A H, Chen J 2005 Acta Pertrol. Mineral. 24 539 (in Chinese) [石俊仙、鲁安怀、陈 洁 2005 岩石矿物学杂志 24 539]

    [9]

    Liu P, Luo H H 2007 J. Wuhan Inst. Tech.29 41 (in Chinese) [刘 鹏、罗惠华 2007 武汉工程大学学报 29 41]

    [10]

    Arehart G B, Eldridge C S, Chryssoulis S L, Kesler S E 1993 Geochim. Cosmochim. Acta 57 1505

    [11]

    Brill B A 1989 Can. Mineral. 27 263

    [12]

    Cabri L J, Blank H, Gorsey A E, Laflamme J H G, Nobiling R, Sizgoric M B, Traxel K 1984 Can. Mineral. 22 521

    [13]

    Chenery S, Cook J M, Stylus M, Cameron E M 1995 Chem. Geol. 124 55

    [14]

    Griffin W L, Ashley P M, Ryan C G, Soey H S, Suter G F 1991 Can. Mineral. 29 185

    [15]

    Oberthür T, Cabri L J, Weiser T W, McMahon G, Muller P 1997 Can. Mineral. 35 597

    [16]

    Huston D L, Sie S H, Suter G F, Cooke D R, Both R A 1995 Econ. Geol. 90 1167

    [17]

    Hara J, Kawabe Y, Komai T, Inoue C 2009 Int. J. Environ. Sci. Eng. 1-2 91

    [18]

    Susac D, Zhu L, Teo M, Sode A, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A 2007 J. Phys. Chem. C 111 18715

    [19]

    Clark S J, Segall,M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717

    [21]

    Vanderbilt D 1990 Phys. Rev. B 40 7892

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [23]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [24]

    Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发、邵晓红 2009 物理学报 58 1908]

    [25]

    Prince K C, Matteucci M, Kuepper K, Chiuzbaian S G, Barkowski S, Neumann M 2005 Phys. Rev. 71 085102-1

    [26]

    Edelbro R, Sandström Å, Paul J 2003 Appl. Surf. Sci. 206 300

    [27]

    Oertzen G U, Jones R T, Gerson A R 2005 Phys. Chem. Miner. 32 255

    [28]

    Womes M, Karnatak R C, Esteva J M, Lefebvre I, Alla G, Olivier-fourcade J, Jumas J C 1997 J. Phys. Chem. Solids 58 345

    [29]

    Opahle I, Koepernik K, Eschrig H 2000 Comput. Mater. Sci. 17 206

    [30]

    Zhao G L, Callaway J, Hayashibara M 1993 Phys. Rev. B 48 15781

    [31]

    Bullett D W 1982 J. Phys. C: Solid State Phys. 15 6163

    [32]

    Schlegel A, Wachter P 1976 J. Phys. C: Solid State Phys. 9 3363

  • [1]

    Rand D A J 1977 J. Electroanal. Chem. 83 19

    [2]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 46 73

    [3]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 47 49

    [4]

    Kuznetsov P N, Sharypov V I, Kurochkin M G, Pospelova T M, Kornietz E D, Trukhacheva V A, Chumakov V G 1989 React. Kinet. Catal. Lett. 38 255

    [5]

    Baldwin R M, Vinciguerra S 1983 Fuel 62 498

    [6]

    Garg D, Givens E N 1982 Ind. Eng. Chem. Process Des. Dev. 21 113

    [7]

    Martino A, Wilcoxon J P, Kawola J S 1994 Energy Fuels 8 1289

    [8]

    Shi J X, Lu A H, Chen J 2005 Acta Pertrol. Mineral. 24 539 (in Chinese) [石俊仙、鲁安怀、陈 洁 2005 岩石矿物学杂志 24 539]

    [9]

    Liu P, Luo H H 2007 J. Wuhan Inst. Tech.29 41 (in Chinese) [刘 鹏、罗惠华 2007 武汉工程大学学报 29 41]

    [10]

    Arehart G B, Eldridge C S, Chryssoulis S L, Kesler S E 1993 Geochim. Cosmochim. Acta 57 1505

    [11]

    Brill B A 1989 Can. Mineral. 27 263

    [12]

    Cabri L J, Blank H, Gorsey A E, Laflamme J H G, Nobiling R, Sizgoric M B, Traxel K 1984 Can. Mineral. 22 521

    [13]

    Chenery S, Cook J M, Stylus M, Cameron E M 1995 Chem. Geol. 124 55

    [14]

    Griffin W L, Ashley P M, Ryan C G, Soey H S, Suter G F 1991 Can. Mineral. 29 185

    [15]

    Oberthür T, Cabri L J, Weiser T W, McMahon G, Muller P 1997 Can. Mineral. 35 597

    [16]

    Huston D L, Sie S H, Suter G F, Cooke D R, Both R A 1995 Econ. Geol. 90 1167

    [17]

    Hara J, Kawabe Y, Komai T, Inoue C 2009 Int. J. Environ. Sci. Eng. 1-2 91

    [18]

    Susac D, Zhu L, Teo M, Sode A, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A 2007 J. Phys. Chem. C 111 18715

    [19]

    Clark S J, Segall,M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717

    [21]

    Vanderbilt D 1990 Phys. Rev. B 40 7892

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [23]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [24]

    Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发、邵晓红 2009 物理学报 58 1908]

    [25]

    Prince K C, Matteucci M, Kuepper K, Chiuzbaian S G, Barkowski S, Neumann M 2005 Phys. Rev. 71 085102-1

    [26]

    Edelbro R, Sandström Å, Paul J 2003 Appl. Surf. Sci. 206 300

    [27]

    Oertzen G U, Jones R T, Gerson A R 2005 Phys. Chem. Miner. 32 255

    [28]

    Womes M, Karnatak R C, Esteva J M, Lefebvre I, Alla G, Olivier-fourcade J, Jumas J C 1997 J. Phys. Chem. Solids 58 345

    [29]

    Opahle I, Koepernik K, Eschrig H 2000 Comput. Mater. Sci. 17 206

    [30]

    Zhao G L, Callaway J, Hayashibara M 1993 Phys. Rev. B 48 15781

    [31]

    Bullett D W 1982 J. Phys. C: Solid State Phys. 15 6163

    [32]

    Schlegel A, Wachter P 1976 J. Phys. C: Solid State Phys. 9 3363

  • [1] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [4] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [5] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [6] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响. 物理学报, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [7] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究. 物理学报, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [8] 张宇飞, 郭志友, 曹东兴. ZnO(0001)表面吸附B的电子结构和光学性质研究. 物理学报, 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [9] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [10] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [11] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [12] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [13] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [14] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [16] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  7071
  • PDF下载量:  813
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2010-11-19
  • 刊出日期:  2011-09-15

/

返回文章
返回