搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

110 GHz微波电离大气产生等离子体过程的理论研究

周前红 董志伟 陈京元

引用本文:
Citation:

110 GHz微波电离大气产生等离子体过程的理论研究

周前红, 董志伟, 陈京元

Modeling of plasma pattern formation in 110 GHz microwave air breakdown

Zhou Qian-Hong, Dong Zhi-Wei, Chen Jing-Yuan
PDF
导出引用
  • 将描述电磁波的Maxwell方程组和简化的等离子体流体方程组耦合数值求解,对110 GHz微波电离大气产生等离子体的过程进行了理论研究. 研究发现:在高气压下等离子体成丝状;中等气压下等离子体先成丝状,在向微波源移动的过程中逐渐向连续的等离子体区域过渡;低气压下电离产生连续的等离子体区域. 不同气压下等离子体区域都向微波源方向移动. 初始电子数密度分布只影响放电初始阶段的等离子体区域形状,不会影响成丝与否. 等离子体区域在垂直于电场方向和平行于电场方向的移动规律不同. 当电场平行于计算平面时,由于沿着电场方向等离子体两端存在强场区,等离子体区域被拉长,在较低的气压下会出现等离子体丝阵.
    Plasma pattern formation in 110 GHz microwave air breakdown is investigated by numerical solution of fluid-based plasmas equations coupled with the Maxwell equations. It is found that the filamentary plasmas are observed at high pressure, the filamentary plasmas transit to diffuse plasma at medium pressure, and the diffuse plasma is obtained at low pressure. The plasmas region propagates toward the microwave source. The distribution of initial electrons influences merely plasmas pattern at first stage, but not final plasmas pattern. The movements in the directions parallel and vertical to electric field are different. Due to the strong electric field at the poles of the plasmas region, the plasmas are elongated in the direction of electric field, forming the filamentary plasmas at much low pressure in E plane.
    • 基金项目: 国家自然科学基金(批准号:11105018)资助的课题.
    [1]

    Gurevich A, Borisov N, Milikh G 1997 Physics of Microwave Discharges (New York: Gordon and Breach)

    [2]

    Oda Y, Komurasaki K, Takahashi K 2006 J. Appl. Phys. 100 113307

    [3]
    [4]
    [5]

    MacDonald A D 1966 Microwave Breakdown in Gases ( New York: John Wiley Sons)

    [6]
    [7]

    Vikharev A L, Gorbachev A M, Kim A V, Kolsyko A L 1992 Sov. J. Plasma Phys. 18 554

    [8]

    Popovic S, Exton R J, Herring G C 2005 Appl. Phys. Lett. 87 061502

    [9]
    [10]

    Esakov I I, Grachev L P, Khodataev K V, Bychkov V L, Van Wie D M 2007 IEEE Trans. Plasma Sci. 35 1658

    [11]
    [12]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 Phys. Rev. Lett. 100 035003

    [13]
    [14]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasmas 16 055702

    [15]
    [16]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

    [17]
    [18]
    [19]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [20]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [21]
    [22]
    [23]

    Chaudhury B, Boeuf J P, Zhu G Q 2010 Phys. Plasmas 17 123505

    [24]

    Chaudhury B, Boeuf J P 2010 IEEE Trans. Plasma Sci. 38 2281

    [25]
    [26]

    Kuo S P, Zhang Y S 1990 J. Appl. Phys. 67 2762

    [27]
    [28]

    Becker K H, Kogelschatz U, Schoenbach K H, Barker R J 2005 Non-equilibrium Air Plasmas at Atmospheric Pressure (Bristo: IOP Publishing Ltd.)

    [29]
    [30]

    Raizer R P 1991 Gas Discharge Physics (Berlin: Springer-Verlag)

    [31]
    [32]
    [33]

    Cummer S A 1997 IEEE Trans. Antennas Propag. 45 392

    [34]
    [35]

    Barashenkov V S, Grachev L P, Esakov I I, Kostenko B F, Khodataev K V, Yurev M Z 2000 Tech. Phys. 45 1406

    [36]

    Ebert U, van Saarloos W, Caroli C 1996 Phys. Rev. Lett. 77 4178

    [37]
    [38]

    Ebert U, van Saarloos W, Caroli C 1997 Phys. Rev. E 55 1530

    [39]
    [40]
    [41]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin.51 2778 (in Chinese)[王新新、芦明泽、蒲以康 2002 物理学报 51 2778]

  • [1]

    Gurevich A, Borisov N, Milikh G 1997 Physics of Microwave Discharges (New York: Gordon and Breach)

    [2]

    Oda Y, Komurasaki K, Takahashi K 2006 J. Appl. Phys. 100 113307

    [3]
    [4]
    [5]

    MacDonald A D 1966 Microwave Breakdown in Gases ( New York: John Wiley Sons)

    [6]
    [7]

    Vikharev A L, Gorbachev A M, Kim A V, Kolsyko A L 1992 Sov. J. Plasma Phys. 18 554

    [8]

    Popovic S, Exton R J, Herring G C 2005 Appl. Phys. Lett. 87 061502

    [9]
    [10]

    Esakov I I, Grachev L P, Khodataev K V, Bychkov V L, Van Wie D M 2007 IEEE Trans. Plasma Sci. 35 1658

    [11]
    [12]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 Phys. Rev. Lett. 100 035003

    [13]
    [14]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasmas 16 055702

    [15]
    [16]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

    [17]
    [18]
    [19]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [20]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [21]
    [22]
    [23]

    Chaudhury B, Boeuf J P, Zhu G Q 2010 Phys. Plasmas 17 123505

    [24]

    Chaudhury B, Boeuf J P 2010 IEEE Trans. Plasma Sci. 38 2281

    [25]
    [26]

    Kuo S P, Zhang Y S 1990 J. Appl. Phys. 67 2762

    [27]
    [28]

    Becker K H, Kogelschatz U, Schoenbach K H, Barker R J 2005 Non-equilibrium Air Plasmas at Atmospheric Pressure (Bristo: IOP Publishing Ltd.)

    [29]
    [30]

    Raizer R P 1991 Gas Discharge Physics (Berlin: Springer-Verlag)

    [31]
    [32]
    [33]

    Cummer S A 1997 IEEE Trans. Antennas Propag. 45 392

    [34]
    [35]

    Barashenkov V S, Grachev L P, Esakov I I, Kostenko B F, Khodataev K V, Yurev M Z 2000 Tech. Phys. 45 1406

    [36]

    Ebert U, van Saarloos W, Caroli C 1996 Phys. Rev. Lett. 77 4178

    [37]
    [38]

    Ebert U, van Saarloos W, Caroli C 1997 Phys. Rev. E 55 1530

    [39]
    [40]
    [41]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin.51 2778 (in Chinese)[王新新、芦明泽、蒲以康 2002 物理学报 51 2778]

计量
  • 文章访问数:  6090
  • PDF下载量:  4651
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-10
  • 修回日期:  2011-07-27
  • 刊出日期:  2011-06-05

/

返回文章
返回