搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn-Na共掺ZnO非极性薄膜的结构及其光电磁性能研究

叶颖惠 吕斌 张维广 黄宏文 叶志镇

引用本文:
Citation:

Mn-Na共掺ZnO非极性薄膜的结构及其光电磁性能研究

叶颖惠, 吕斌, 张维广, 黄宏文, 叶志镇

Study on the structure, optical, electrical and magnetic properties of Mn-Na codoping ZnO nonpolar thin films

Ye Ying-Hui, Lü Bin, Zhang Wei-Guang, Huang Hong-Wen, Ye Zhi-Zhen
PDF
导出引用
  • 非极性方向生长的ZnO基多量子阱消除了量子限域Stark效应, 可以提高光电器件的发光效率. 据此我们采用脉冲激光沉积方法(PLD)在r面蓝宝石衬底上生长了高质量的a面(1120)单一取向非极性Zn(Mn,Na)O薄膜. X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、Hall测试、X射线光电子能谱(XPS)等测试结果表明: 衬底温度和生长气压对Zn(Mn,Na)O薄膜的非极性生长影响很大, 在600℃和0.02 Pa条件下实现了Mn-Na共掺, 得到了高结晶质量并具有良好光电性能的非极性Zn(Mn,Na)O薄膜. 此外, 我们还利用超导量子干涉仪(SQUID)研究了Zn(Mn,Na)O薄膜的生长取向对其室温铁磁性能的影响规律, 并对引起磁性变化的机理进行了讨论.
    Nonpolar Zn(Mn, Na)O thin films with orientation (a-plane) have been successfully grown on r-plane sapphire substrates by pulsed laser deposition (PLD) through a Mn-Na codoping route. The X-ray diffraction(XRD), field-emission on scanning electron micorscope(FE-SEM), Hall-effect and X-ray photoelectron spectroscopy(XPS) measurements show that substrate temperature and work pressure have a significant influence on the nonpolar growth of Zn(Mn,Na)O thin films. The films prepared under a work pressure of 0.02Pa and substrate temperature of 600 ℃ could achieve a high quality crystallite with fine optical and electrical properties through Mn-Na codoping. Moreover, the influence of the growth orientation on room temperature ferromagnetism (RTFM) of the thin films is investigated by superconducting quantum interference device(SQUID), and the possible mechanism involving the origin of RTFM in the Zn(Mn,Na)O films is discussed as well.
    • 基金项目: 国家自然科学基金(批准号: 51002134) 和中央高校基本科研业务费专项资金(批准号: 2010QNA4002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51002134) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2010QNA4002).
    [1]

    陈长乐, 高国棉, 杨晓光, 袁孝, 宋宙模 2006 物理学报 55 3133]

    [2]

    Mang A, Reimann K, Rübenacke St 1995 Solid State Commun. 94251

    [3]

    Reynolds D C, Look D C, Jogai B 1996 Solid State Commun. 99873

    [4]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, ShenMY, GotoT 1997 Appl. Phys. Lett. 70 2230

    [5]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [6]

    Özgür Ü , Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S,Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [7]

    Wetzel C, Zhu M, Senawiratne J, Detchprohm T, Persans P D, LiuL, Preble E A, Hanser D 2008 J. Cryst. Growth 310 3987

    [8]

    Zhang B P, Liu B L, Yu J Z, Wang Q M 2007 Appl. Phys. Lett. 90132113

    [9]

    Tanaka A, Yanagitani T, Matsukawa M, Watanabe Y 2008 IEEETrans. Ultrason. Ferroelectr. Freq. Control 55 2709

    [10]

    Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, RamsteinerM, Reiche M, Ploog K H 2000 Nature 406 865

    [11]

    Chauveau J M, Morhain C, Lo B, Vinter B, Vennegues P, Laugt M,Buell D, Tesseire-Doninelli M, Neu G 2007 Appl. Phys. A Mater.Sci. Process. 88 65

    [12]

    Wei X H, Li Y R, Jie W J, Tang J L, Zeng H Z, Huang W, ZhangY, Zhu J 2007 J. Phys. D Appl. Phys. 40 7502

    [13]

    Chou M M C, Hang D R, Wang S C, Chen C L, Lee C Y 2010 J.Cryst. Growth 312 1170

    [14]

    Kashiwaba Y, Abe T, Nakagawa A, Endo H, Niikura I, KashiwabaY 2009 Phys. Status Solidi A Appl. Mat. 206 944

    [15]

    Chauveau J M, Teisseire M, Kim-Chauveau H, Deparis C,Morhain C, Vinter B 2010 Appl. Phys. Lett. 97 081903

    [16]

    Chou M M C, Chang L W, Hang D R, Chen C L, Chang D S, LiC A 2009 Cryst. Growth Des. 9 2073

    [17]

    Zhou J H, Zhou S M, Huang T H, Lin H, Li S Z, Zou J, Wang J,Han P, Zhang R 2008 Acta Phys. Sin. 57 430 (in Chinese) [周健华, 周圣明, 黄涛华, 林辉, 李抒智, 邹军, 王军, 韩平, 张荣 2008 物理学报 57 0430]

    [18]

    Kajikawa Y 2006 J. Cryst. Growth 289 387

    [19]

    Phan T L, Vincent R, Phan M H, Dan N H, Yu S C 2007 SolidState Commun. 144 134

    [20]

    Ye Z Z, Zhang L Q, Lu B, Lu J G, He H P, Zhang Y Z, Zhu L P,Huang J Y, Jin Y Z, Zhang J, Jiang J, Wu K W, Huang J, Xie Z (inpress)

    [21]

    Gu H, Jiang Y Z, Xu Y B, Yan M 2011 Appl. Phys. Lett. 98012502

    [22]

    Zhao Y Z, Chen C L, Gao G M, Yang X G, Yuan X, Song Z M2006 Acta Phys. Sin. 55 3133 (in Chinese) [赵跃智,

    [23]

    Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L, Mu R 2006 Appl.Phys. Lett. 88 242502

    [24]

    Biesinger M C, Paynec B P, Grosvenord A P, Laua L W M, GersonbA R, Smart R S C 2011 Appl. Surf. Sci. 257 2721

    [25]

    Chuang T J, Brundle C R, Rice D W 1976 Surf. Sci. 59 413

    [26]

    Zhang L Q, Ye Z Z, Lu J G, Zhang Y Z, Zhu L P, Zhang J, Yang D,Wu K W, Huang J, Xie Z 2010 J. Phys. D Appl. Phys. 43 015001

    [27]

    Yang L W, Wu X L, Huang G S, Qiu T, Yang Y M 2005 J. Appl.Phys. 97 014308

    [28]

    Srikant V, Clarke D R 1997 J. Appl. Phys. 81 6357

    [29]

    Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, SvenssonB G, Yakimova R 2006 Superlattices Microstruct. 39 275

    [30]

    Maiti U N, Ghosh P K, Nandy S, Chattopadhyay K K 2007 PhysicaB 387 103

    [31]

    Mofor A C, El-Shaer A, Bakin A, Waag A, Ahlers H, SiegnerU, Sievers S, Albrecht M, Schoch W, Izyumskaya N, Avrutin V,Sorokin S, Ivanov S, Stoimenos J 2005 Appl. Phys. Lett. 87062501

    [32]

    Sato K, Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17367

    [33]

    Yang Z, Liu J L, Biasini M, Beyermann P 2008 Appl. Phys. Lett.92 042111

    [34]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4173036701-7

  • [1]

    陈长乐, 高国棉, 杨晓光, 袁孝, 宋宙模 2006 物理学报 55 3133]

    [2]

    Mang A, Reimann K, Rübenacke St 1995 Solid State Commun. 94251

    [3]

    Reynolds D C, Look D C, Jogai B 1996 Solid State Commun. 99873

    [4]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, ShenMY, GotoT 1997 Appl. Phys. Lett. 70 2230

    [5]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [6]

    Özgür Ü , Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S,Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [7]

    Wetzel C, Zhu M, Senawiratne J, Detchprohm T, Persans P D, LiuL, Preble E A, Hanser D 2008 J. Cryst. Growth 310 3987

    [8]

    Zhang B P, Liu B L, Yu J Z, Wang Q M 2007 Appl. Phys. Lett. 90132113

    [9]

    Tanaka A, Yanagitani T, Matsukawa M, Watanabe Y 2008 IEEETrans. Ultrason. Ferroelectr. Freq. Control 55 2709

    [10]

    Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, RamsteinerM, Reiche M, Ploog K H 2000 Nature 406 865

    [11]

    Chauveau J M, Morhain C, Lo B, Vinter B, Vennegues P, Laugt M,Buell D, Tesseire-Doninelli M, Neu G 2007 Appl. Phys. A Mater.Sci. Process. 88 65

    [12]

    Wei X H, Li Y R, Jie W J, Tang J L, Zeng H Z, Huang W, ZhangY, Zhu J 2007 J. Phys. D Appl. Phys. 40 7502

    [13]

    Chou M M C, Hang D R, Wang S C, Chen C L, Lee C Y 2010 J.Cryst. Growth 312 1170

    [14]

    Kashiwaba Y, Abe T, Nakagawa A, Endo H, Niikura I, KashiwabaY 2009 Phys. Status Solidi A Appl. Mat. 206 944

    [15]

    Chauveau J M, Teisseire M, Kim-Chauveau H, Deparis C,Morhain C, Vinter B 2010 Appl. Phys. Lett. 97 081903

    [16]

    Chou M M C, Chang L W, Hang D R, Chen C L, Chang D S, LiC A 2009 Cryst. Growth Des. 9 2073

    [17]

    Zhou J H, Zhou S M, Huang T H, Lin H, Li S Z, Zou J, Wang J,Han P, Zhang R 2008 Acta Phys. Sin. 57 430 (in Chinese) [周健华, 周圣明, 黄涛华, 林辉, 李抒智, 邹军, 王军, 韩平, 张荣 2008 物理学报 57 0430]

    [18]

    Kajikawa Y 2006 J. Cryst. Growth 289 387

    [19]

    Phan T L, Vincent R, Phan M H, Dan N H, Yu S C 2007 SolidState Commun. 144 134

    [20]

    Ye Z Z, Zhang L Q, Lu B, Lu J G, He H P, Zhang Y Z, Zhu L P,Huang J Y, Jin Y Z, Zhang J, Jiang J, Wu K W, Huang J, Xie Z (inpress)

    [21]

    Gu H, Jiang Y Z, Xu Y B, Yan M 2011 Appl. Phys. Lett. 98012502

    [22]

    Zhao Y Z, Chen C L, Gao G M, Yang X G, Yuan X, Song Z M2006 Acta Phys. Sin. 55 3133 (in Chinese) [赵跃智,

    [23]

    Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L, Mu R 2006 Appl.Phys. Lett. 88 242502

    [24]

    Biesinger M C, Paynec B P, Grosvenord A P, Laua L W M, GersonbA R, Smart R S C 2011 Appl. Surf. Sci. 257 2721

    [25]

    Chuang T J, Brundle C R, Rice D W 1976 Surf. Sci. 59 413

    [26]

    Zhang L Q, Ye Z Z, Lu J G, Zhang Y Z, Zhu L P, Zhang J, Yang D,Wu K W, Huang J, Xie Z 2010 J. Phys. D Appl. Phys. 43 015001

    [27]

    Yang L W, Wu X L, Huang G S, Qiu T, Yang Y M 2005 J. Appl.Phys. 97 014308

    [28]

    Srikant V, Clarke D R 1997 J. Appl. Phys. 81 6357

    [29]

    Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, SvenssonB G, Yakimova R 2006 Superlattices Microstruct. 39 275

    [30]

    Maiti U N, Ghosh P K, Nandy S, Chattopadhyay K K 2007 PhysicaB 387 103

    [31]

    Mofor A C, El-Shaer A, Bakin A, Waag A, Ahlers H, SiegnerU, Sievers S, Albrecht M, Schoch W, Izyumskaya N, Avrutin V,Sorokin S, Ivanov S, Stoimenos J 2005 Appl. Phys. Lett. 87062501

    [32]

    Sato K, Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17367

    [33]

    Yang Z, Liu J L, Biasini M, Beyermann P 2008 Appl. Phys. Lett.92 042111

    [34]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4173036701-7

  • [1] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [2] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [3] 谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高. Zn0.97Cr0.03O的PLD制备及其铁磁性. 物理学报, 2014, 63(7): 077102. doi: 10.7498/aps.63.077102
    [4] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响. 物理学报, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [5] 秦杰明, 曹建明, 蒋大勇. Mg0.57Zn0.43O合金薄膜生长及性能表征. 物理学报, 2013, 62(13): 138101. doi: 10.7498/aps.62.138101
    [6] 丁斌峰, 相凤华, 王立明, 王洪涛. He+辐照对Ga0.94Mn0.06As薄膜铁磁性的改善. 物理学报, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [7] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [8] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响. 物理学报, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [9] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性. 物理学报, 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [10] 丁芃, 刘发民, 杨新安, 李建奇. Co离子注入TiO2薄膜的显微结构和磁性研究. 物理学报, 2011, 60(3): 036803. doi: 10.7498/aps.60.036803
    [11] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性. 物理学报, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [12] 严国清, 谢凯旋, 莫仲荣, 路忠林, 邹文琴, 王申, 岳凤娟, 吴镝, 张凤鸣, 都有为. 共沉淀法制备Co掺杂ZnO的室温铁磁性的研究. 物理学报, 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [13] 周健华, 周圣明, 黄涛华, 林 辉, 李抒智, 邹 军, 王 军, 张 荣. γ-LiAlO2上非极性ZnO薄膜制备及其光谱性质研究. 物理学报, 2007, 56(7): 4044-4048. doi: 10.7498/aps.56.4044
    [14] 吴 坚, 张世远. Ag掺杂La-K-Mn-O非均匀多晶体系的电磁性质. 物理学报, 2006, 55(9): 4893-4900. doi: 10.7498/aps.55.4893
    [15] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变. 物理学报, 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [16] 宋红强, 陈延学, 任妙娟, 季 刚. Ti1-xCoxO2铁磁性半导体薄膜研究. 物理学报, 2005, 54(1): 369-372. doi: 10.7498/aps.54.369
    [17] 匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为. 稀释磁性半导体Sn1-xMnxO2的室温铁磁性. 物理学报, 2005, 54(6): 2934-2937. doi: 10.7498/aps.54.2934
    [18] 柳祝红, 吴光恒, 王文洪, 陈京兰, 敖玲, 金重勋. 内应力对铁磁性形状记忆合金Ni-Mn-Ga马氏体相变路径的影响. 物理学报, 2002, 51(3): 640-644. doi: 10.7498/aps.51.640
    [19] 陈金昌, 石双合, 赵见高, 詹文山, 沈保根. 非晶态铁磁性Fe—TM—B合金的相干势近似. 物理学报, 1987, 36(9): 1182-1186. doi: 10.7498/aps.36.1182
    [20] 邝宇平, 易余萍. 铁磁性的量子理论. 物理学报, 1963, 19(9): 541-559. doi: 10.7498/aps.19.541
计量
  • 文章访问数:  5470
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-23
  • 修回日期:  2011-05-14
  • 刊出日期:  2012-03-15

/

返回文章
返回