搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究

刘兴辉 张俊松 王绩伟 敖强 王震 马迎 李新 王振世 王瑞玉

引用本文:
Citation:

基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究

刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉

Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory

Liu Xing-Hui, Zhang Jun-Song, Wang Ji-Wei, Ao Qiang, Wang Zhen, Ma Ying, Li Xin, Wang Zhen-Shi, Wang Rui-Yu
PDF
导出引用
  • 为改善碳纳米管场效应晶体管的性能,将一种峰值掺杂-低掺杂漏(HALO-LDD)掺杂结构引入碳纳米管沟道.在量子力学非平衡Green函数理论框架内,通过自洽求解Poisson方程和Schrödinger方程,构建了适用于非均匀掺杂的碳纳米管场效应管的输运模型,该模型可实现场效应晶体管的输运性质与碳纳米管手性指数的对接. 利用该模型研究了单HALO双LDD 掺杂结构对碳纳米管场效应晶体管输运特性的影响.对比分析表明,这种非均匀掺杂结构的场效应管同本征碳纳米管沟道场效应晶体管相比,具有更低的泄漏电流、更大的电流开关比、更小的亚阈区栅电压摆幅,表明其具有更好的栅控能力; 具有更小的漏源电导,更适合应用于模拟集成电路中;具有更小的阈值电压漂移,表明更能抑制短沟道效应. 同本征沟道碳纳米管场效应晶体管相比,这种非均匀掺杂碳纳米管场效应晶体管在沟道区靠近源端位置,电场强度增大, 有利于增大电子的传输速率;在沟道区靠近漏端位置,电场强度减小,更有利于抑制热电子效应.
    A transport model of CNTFET is built by solving the Poisson equation and Schrödinger equation within the non-equilibrium Green's function theory. The simulation method can relate the CNTFET transport properties directly with the chiral index of CNT. For the first time, the influences of single HALO and double LDD (HLL) doping structures on the CNTFET are investigated. The results show that under the same gate-source and drain-source voltages, HLL-CNTFET reduces significantly the leakage current and the subthreshold swing and increases on-off current ratio as compared with conventional CNTFET, indicating that this new structure has better gate control ability than conventional CNTFET. HLL-CNTFET possesses a smaller drain-source conductance so that it is more suitable for analog integrated circuits application, and has a smaller threshold voltage shift so shat it can better suppress DIBL effect. The increase of channel electric field strength near the source is beneficial to the increase of the electron transport rate; and the reduction in electric field near the drain is more conductive to the suppression of hot electron effects. This study is helpful for understanding the working mechanism and exploring new features of CNTFET.
    • 基金项目: 国家自然科学基金(批准号: 10974075, 21171081)、 辽宁省教育厅科学研究基金(批准号: L2010152)和辽宁省科技厅自然科学基金(批准号: 20082050)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974075, 21171081), the Liaoning Province Education Department Research Project, China (Grant No. L2010152), the Natural Science Foundation of Liaoning Province, China (Grant No. 20082050).
    [1]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [2]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447

    [3]

    Yang W C, Yang T Y, Yew T R 2007 Carbon 45 1679

    [4]

    Chen C X, Zhang Y F 2005 Sci. China Ser E 35 1156 (in Chinese) [陈长鑫, 张亚非 2005 中国科学E 35 1156]

    [5]

    Zhang Z Y, Wang S, Liang X L, Chen Q 2006 Chin. J. Vac. Sci. Technol. 26 353 (in Chinese) [张振宇, 王胜, 梁学磊, 陈清 2006 真空科学与技术学报 26 353]

    [6]

    Wang X F, Huang R, Fu Y Y, Zhang X 2004 J. Func. Mater. Dev. 10 273 (in Chinese) [王晓峰, 黄如, 傅云义, 张兴 2004 功能材料与器件学报 10 273]

    [7]

    Zhou H L, Chi Y Q, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 8104 (in Chinese) [周海亮, 池雅庆, 张民选, 方粮 2010 物理学报 59 8104]

    [8]

    Zhou H L, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 5010 (in Chinese) [周海亮, 张民选, 方粮 2010 物理学报 59 5010]

    [9]

    Liang W, Bozovic D, Hafner J H, Tinkham M, Park H 2001 Nature 411 665

    [10]

    Durkop T, Getty S A, Cobas E, Fuhrer M S 2004 Nano Lett. 4 35

    [11]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654

    [12]

    Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2491

    [13]

    Chen P Y, Shao Y L, Cheng K W 2007 Comput. Phys. Commun. 177 683

    [14]

    Pourfath M, Kosina H, Selberherr S 2008 Math. Comput. Simul. 79 1051

    [15]

    Pourfath M, Kosina H, Selberherr S 2007 Solid State Electron 51 1565

    [16]

    Zou J P, Zhang Q, Marzari N 2008 Phys. Lett. A 372 6940

    [17]

    Zahra A, Ali A O 2009 Microelectron. J. 40 5

    [18]

    Ali A O, Zahra A 2009 Physica E 41 552

    [19]

    Chen C X, Zhang W, Zhao B, Zhang Y F 2009 Phys. Lett. A 374 309

    [20]

    Guo J, Datta S, Anantram M P, Lundstrom M 2004 J. Comput. Electron. 3 373

    [21]

    Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489 [刘红, 印海建, 夏树宁 2009 物理学报 58 8489]

    [22]

    Zahra A, Ali A O 2008 Physica E 41 196

    [23]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [24]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702

  • [1]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [2]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447

    [3]

    Yang W C, Yang T Y, Yew T R 2007 Carbon 45 1679

    [4]

    Chen C X, Zhang Y F 2005 Sci. China Ser E 35 1156 (in Chinese) [陈长鑫, 张亚非 2005 中国科学E 35 1156]

    [5]

    Zhang Z Y, Wang S, Liang X L, Chen Q 2006 Chin. J. Vac. Sci. Technol. 26 353 (in Chinese) [张振宇, 王胜, 梁学磊, 陈清 2006 真空科学与技术学报 26 353]

    [6]

    Wang X F, Huang R, Fu Y Y, Zhang X 2004 J. Func. Mater. Dev. 10 273 (in Chinese) [王晓峰, 黄如, 傅云义, 张兴 2004 功能材料与器件学报 10 273]

    [7]

    Zhou H L, Chi Y Q, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 8104 (in Chinese) [周海亮, 池雅庆, 张民选, 方粮 2010 物理学报 59 8104]

    [8]

    Zhou H L, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 5010 (in Chinese) [周海亮, 张民选, 方粮 2010 物理学报 59 5010]

    [9]

    Liang W, Bozovic D, Hafner J H, Tinkham M, Park H 2001 Nature 411 665

    [10]

    Durkop T, Getty S A, Cobas E, Fuhrer M S 2004 Nano Lett. 4 35

    [11]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654

    [12]

    Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2491

    [13]

    Chen P Y, Shao Y L, Cheng K W 2007 Comput. Phys. Commun. 177 683

    [14]

    Pourfath M, Kosina H, Selberherr S 2008 Math. Comput. Simul. 79 1051

    [15]

    Pourfath M, Kosina H, Selberherr S 2007 Solid State Electron 51 1565

    [16]

    Zou J P, Zhang Q, Marzari N 2008 Phys. Lett. A 372 6940

    [17]

    Zahra A, Ali A O 2009 Microelectron. J. 40 5

    [18]

    Ali A O, Zahra A 2009 Physica E 41 552

    [19]

    Chen C X, Zhang W, Zhao B, Zhang Y F 2009 Phys. Lett. A 374 309

    [20]

    Guo J, Datta S, Anantram M P, Lundstrom M 2004 J. Comput. Electron. 3 373

    [21]

    Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489 [刘红, 印海建, 夏树宁 2009 物理学报 58 8489]

    [22]

    Zahra A, Ali A O 2008 Physica E 41 196

    [23]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [24]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702

  • [1] 贾晓菲, 魏群, 张文鹏, 何亮, 武振华. 10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析. 物理学报, 2023, 72(22): 227303. doi: 10.7498/aps.72.20230661
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [4] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [5] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [7] 辛艳辉, 刘红侠, 范小娇, 卓青青. 非对称Halo异质栅应变Si SOI MOSFET的二维解析模型. 物理学报, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [8] 刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华. 基于异质双栅电极结构提高碳纳米管场效应晶体管电子输运效率. 物理学报, 2013, 62(14): 147308. doi: 10.7498/aps.62.147308
    [9] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [10] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [11] 冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富. 基于单电子晶体管 - 金属氧化物场效应晶体管电路的离散混沌系统实现. 物理学报, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [12] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [13] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [14] 李劲, 刘红侠, 李斌, 曹磊, 袁博. 高k栅介质应变Si SOI MOSFET的阈值电压解析模型. 物理学报, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [15] 李伟华, 庄奕琪, 杜磊, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究. 物理学报, 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [16] 刘红, 印海建. 外加轴向磁场下碳纳米管场效应晶体管的电学性质. 物理学报, 2009, 58(5): 3287-3292. doi: 10.7498/aps.58.3287
    [17] 刘红, 印海建, 夏树宁. 形变碳纳米管场效应晶体管的电学性质. 物理学报, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
    [18] 施卫, 薛红, 马湘蓉. 半绝缘GaAs光电导开关体内热电子的光电导振荡特性. 物理学报, 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [19] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件. 物理学报, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
计量
  • 文章访问数:  6549
  • PDF下载量:  990
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-08
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回