搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究

赵荣达 朱景川 刘勇 来忠红

引用本文:
Citation:

FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究

赵荣达, 朱景川, 刘勇, 来忠红

First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y

Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法, 研究了稀土元素(La, Ac, Sc 和 Y) 微合金化对FeAl (B2) 有序金属间化合物合金晶体结构、 弹性和电子性能的影响. 计算结果表明: 稀土元素Y 易于取代Fe位, 而Sc, La和Ac易于取代Al位, 其中Ac元素的加入使晶格点阵发生最大的变形. 弹性性能的计算表明La, Ac, Sc 和 Y 元素的加入可以改善FeAl (B2) 的塑性, 其中Fe7Al8Sc具有最好的塑性和硬度. 稀土元素对合金性能的影响, 主要是由于稀土原子的加入改变了Fe和Al电子之间的杂化作用. 计算结果与已有的试验结果和理论结果相一致.
    The effects of FeAl(B2) microalloyed with rare earth element (REEs) La, Ac, Sc and Y on structural, elastic and electronic properties are investigated by first-principles calculation based on the density function theory (DFT). The calculation results show that the REEs Y tend to be substituted for Fe site, while La, Ac and Sc tend to be substituted for Al site, and Ac causes the largest lattice distortion. The calculation results of elastic properties show that the ductility of FeAl(B2) is improved by the addition of La, Ac, Sc and Y. The Fe7Al8Sc has better ductility and hardness. The effect of REEs on the performance of alloy is attributed to the variation of hybridization between Fe and Al electrons. The calculation results are in accordance with experimental and theoretical results.
    [1]

    Deevi S C, Sikka V K 1996 Intermetallics 4 357

    [2]

    Schneibel J H, Carmichael C A, Specht E D, Subramanian R 1996 Intermetallics 5 61

    [3]

    Morris D G, Chao J 2004 Intermetallics 12 821

    [4]

    George E P, Yamaguchi M, Kumar K S, Liu C T 1994 Ann. Rev. Mater. Sci. 25 409

    [5]

    Zhong X P, Deng W, Tang Y S, Xiong L Y, Wang S H, Guo J T, Long Q W 1998 Acta Phys. Sin. 47 1734 (in Chinese) 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威 1998 物理学报 47 1734

    [6]

    Deevi S C, Sikka V K 1996 Intermetallics 4 361

    [7]

    Deevi S C 2000 Intermetallics 8 679

    [8]

    Morris D G, Morris-Munoz M A 1999 Intermetallics 7 1121

    [9]

    Skoglund H, Knutson M, Karlsson B 2004 Intermetallics 12 977

    [10]

    Palm M, Sauthoff G 2004 Intermetallics 12 1345

    [11]

    Krein R, Schneider A, Sauthoff G, Frommeyer G 2007 Intermetallics 15 1172

    [12]

    Schneider A, Falat L, Sauthoff G, Frommeyer G 2003 Intermetallics 11 443

    [13]

    Morris M A, Morris D G 1990 Acta Metall Mater 38 551

    [14]

    Arzt E, Behr R, Grahle P, Mason R P 1997 Mater Sci. Eng. A 234 22

    [15]

    Guo J T, Huai K W, Gao Q 2007 Intermetallics 15 727

    [16]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [17]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [18]

    Fuks D, Strutz A, Kiv A 2006 Intermetallics 14 1245

    [19]

    Zhang B, So.a WA 1994 Scr Metall Mater 30 683

    [20]

    Nguyen-Manh D, Pettifor D G 1999 Intermetallics 7 1095

    [21]

    Pugh S F 1954 Philos. Mag. 45 823

    [22]

    Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951

    [23]

    Xu J, Freeman A J 1990 Phys. Rev. B 41 12553

    [24]

    Colinet C, Pasturel A, Bushow K H J 1988 Physica B 150 397

  • [1]

    Deevi S C, Sikka V K 1996 Intermetallics 4 357

    [2]

    Schneibel J H, Carmichael C A, Specht E D, Subramanian R 1996 Intermetallics 5 61

    [3]

    Morris D G, Chao J 2004 Intermetallics 12 821

    [4]

    George E P, Yamaguchi M, Kumar K S, Liu C T 1994 Ann. Rev. Mater. Sci. 25 409

    [5]

    Zhong X P, Deng W, Tang Y S, Xiong L Y, Wang S H, Guo J T, Long Q W 1998 Acta Phys. Sin. 47 1734 (in Chinese) 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威 1998 物理学报 47 1734

    [6]

    Deevi S C, Sikka V K 1996 Intermetallics 4 361

    [7]

    Deevi S C 2000 Intermetallics 8 679

    [8]

    Morris D G, Morris-Munoz M A 1999 Intermetallics 7 1121

    [9]

    Skoglund H, Knutson M, Karlsson B 2004 Intermetallics 12 977

    [10]

    Palm M, Sauthoff G 2004 Intermetallics 12 1345

    [11]

    Krein R, Schneider A, Sauthoff G, Frommeyer G 2007 Intermetallics 15 1172

    [12]

    Schneider A, Falat L, Sauthoff G, Frommeyer G 2003 Intermetallics 11 443

    [13]

    Morris M A, Morris D G 1990 Acta Metall Mater 38 551

    [14]

    Arzt E, Behr R, Grahle P, Mason R P 1997 Mater Sci. Eng. A 234 22

    [15]

    Guo J T, Huai K W, Gao Q 2007 Intermetallics 15 727

    [16]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [17]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [18]

    Fuks D, Strutz A, Kiv A 2006 Intermetallics 14 1245

    [19]

    Zhang B, So.a WA 1994 Scr Metall Mater 30 683

    [20]

    Nguyen-Manh D, Pettifor D G 1999 Intermetallics 7 1095

    [21]

    Pugh S F 1954 Philos. Mag. 45 823

    [22]

    Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951

    [23]

    Xu J, Freeman A J 1990 Phys. Rev. B 41 12553

    [24]

    Colinet C, Pasturel A, Bushow K H J 1988 Physica B 150 397

计量
  • 文章访问数:  7020
  • PDF下载量:  752
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-12
  • 修回日期:  2011-12-04
  • 刊出日期:  2012-07-05

/

返回文章
返回