搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树叶状红外频段完美吸收器的仿真设计

苏斌 龚伯仪 赵晓鹏

引用本文:
Citation:

树叶状红外频段完美吸收器的仿真设计

苏斌, 龚伯仪, 赵晓鹏

Numerical simulation of leaf-shaped metamaterial absorber at infrared frequency

Su Bin, Gong Bo-Yi, Zhao Xiao-Peng
PDF
导出引用
  • 设计了一种由树叶状金属薄膜-介质层-金属薄膜构成的低剖面完美吸收器模型. 通过对金属介电性能采用Drude定理,仿真发现调节结构参数可在红外通讯频段几乎达到完美吸收 (吸收率为99.5%),并且在某些特定的结构参数下可以同时实现双频段的完美吸收 (其吸收率分别达到99.67%和97.13%),这在某种意义上展宽了吸收频带, 对红外吸收器的设计与应用极为有利.最后探索了叶颈宽度变化对双频吸收峰位置的影响, 以便对双峰吸收进行调频操作.这种红外频段的超材料吸收器具有结构简单、吸收效率极高、工作频段宽等优点.
    We present a perfect metamaterial abosorber composed of metallic leaf-shaped cells, dielectric substrate and metallic film. Based on the metallic Drude principle, this structure can realize an perfect absorptivity of 99.5% at the infrared communication frequencies with appropriate geometric parameters. Moreover, this structure can simultaneously achieve perfect absorptions at two infrared frequencies with the maximal magnitudes of 99.67% and 97.13% respectively, which effectively broadens the bandwidth of absorptivity, thereby benefiting the design and the application of absorber at the infrared frequencies. Afterward, the effects of the neck width on the position of the double absorptivity peak are investigated, and expected to be used in frequency modulation. The model proposed in this paper has a series of advantages such as simple structure, high absorptivity and broad operating bandwidth.
    • 基金项目: 国家自然科学基金(批准号: 50872113, 50936002, 11174234)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50872113, 50936002, 11174234).
    [1]

    Veselago V G 1967 Usp. Fiz. Nauk 92 517

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 25

    [4]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. MTT 47 2075

    [5]

    Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [6]

    Shelby R A, Smith D R, Schulrz S 2001 Science 292 77

    [7]

    Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾, 赵晓鹏, 康雷, 张富利, 刘亚红, 罗春荣 2004 物理学报 53 2206]

    [8]

    Huangfu J T, Ran L, Chen H, Zhang X, Chen K, Grzegorczyk T M, Kong J A 2004 Appl. Phys. Lett. 84 1357

    [9]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [10]

    Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620

    [11]

    Xu F, Bai Y, Qiao L J, Zhao H J, Zhou J 2009 Chin. Phys. B 18 1653

    [12]

    Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z, Qu S B 2011 Chin. Phys. B 20 014101

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [14]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801

    [15]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [16]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [17]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [18]

    Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [19]

    Liu H, Zhao X P, Yang Y, Li Q W, Lü J 2008 Adv. Mater. 20 2050

    [20]

    Zhu W R, Zhao X P, Gong B Y 2011 J. Appl. Phys. 109 093504

    [21]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [22]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6070 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6070]

    [23]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [24]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800

    [25]

    Tang S W, Zhu W R, Zhao X P 2009 Acta Phys. Sin. 58 3220 (in Chinese) [汤世伟, 朱卫仁, 赵晓鹏 2009 物理学报 58 3220]

    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [28]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608

  • [1]

    Veselago V G 1967 Usp. Fiz. Nauk 92 517

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 25

    [4]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. MTT 47 2075

    [5]

    Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [6]

    Shelby R A, Smith D R, Schulrz S 2001 Science 292 77

    [7]

    Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾, 赵晓鹏, 康雷, 张富利, 刘亚红, 罗春荣 2004 物理学报 53 2206]

    [8]

    Huangfu J T, Ran L, Chen H, Zhang X, Chen K, Grzegorczyk T M, Kong J A 2004 Appl. Phys. Lett. 84 1357

    [9]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [10]

    Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620

    [11]

    Xu F, Bai Y, Qiao L J, Zhao H J, Zhou J 2009 Chin. Phys. B 18 1653

    [12]

    Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z, Qu S B 2011 Chin. Phys. B 20 014101

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [14]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801

    [15]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [16]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [17]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [18]

    Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [19]

    Liu H, Zhao X P, Yang Y, Li Q W, Lü J 2008 Adv. Mater. 20 2050

    [20]

    Zhu W R, Zhao X P, Gong B Y 2011 J. Appl. Phys. 109 093504

    [21]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [22]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6070 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6070]

    [23]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [24]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800

    [25]

    Tang S W, Zhu W R, Zhao X P 2009 Acta Phys. Sin. 58 3220 (in Chinese) [汤世伟, 朱卫仁, 赵晓鹏 2009 物理学报 58 3220]

    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [28]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 皇甫夏虹, 刘双飞, 肖家军, 张蓓, 彭新村. 纳米光子学结构对GaInAsSb p-n结红外光电性能的调控. 物理学报, 2021, 70(11): 118501. doi: 10.7498/aps.70.20201829
    [3] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [4] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [5] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [6] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [7] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [8] 郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛. 紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响. 物理学报, 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [9] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [10] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [11] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [12] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [13] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [14] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [15] 陈代兵, 王冬, 范植开, 孟凡宝, 安海狮, 龚海涛, 秦奋. L波段双频磁绝缘线振荡器的实验研究. 物理学报, 2009, 58(7): 4548-4555. doi: 10.7498/aps.58.4548
    [16] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [17] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [18] 王冬, 陈代兵, 秦奋, 范植开. 双频磁绝缘线振荡器二维周期结构研究. 物理学报, 2009, 58(10): 6962-6972. doi: 10.7498/aps.58.6962
    [19] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究. 物理学报, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [20] 毛 威, 张书练. 基于双折射双频激光器中的调频回馈位移测量研究. 物理学报, 2007, 56(3): 1409-1414. doi: 10.7498/aps.56.1409
计量
  • 文章访问数:  6456
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-15
  • 修回日期:  2011-12-21
  • 刊出日期:  2012-07-05

/

返回文章
返回