搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一般边界条件下球形压力容器钢壁中氚和氦-3的浓度变化规律研究

刘远东 尹益辉 谭云

引用本文:
Citation:

一般边界条件下球形压力容器钢壁中氚和氦-3的浓度变化规律研究

刘远东, 尹益辉, 谭云

Research on tritium and helium-3 content distributions in steel wall of spherical pressure vessel under general boundary condition

Liu Yuan-Dong, Yin Yi-Hui, Tan Yun
PDF
导出引用
  • 为了认识储氚高压容器壁材料的力学性能变化及其导致的容器承载能力变化, 必须研究储氚期间, 容器壁中氚和氦-3浓度的空间分布和随时间的变化. 针对容器外表面为一般传质边界条件和容器内部氚为范德瓦尔斯气体的情况, 同时考虑容器腔内和容器壁中氚的衰变和扩散, 建立求解储氚高压容器壁中氚和氦-3浓度的解析理论模型, 导出了氚和氦-3浓度的理论公式. 通过解析计算给出了器壁中氚和氦-3浓度随外表面传质系数的变化曲线和浓度的时空变化曲线, 提出了氦-3浓度的2 1 + 2 / 2倍定律, 即处于开放空间的储氚球形高压容器, 器壁中氦-3的浓度呈内高外低的分布, 时间越长, 浓度沿径向的梯度越大, 在时间足够长时, 各处浓度逼近时间无限长时的最终值, 也就是各处的最大值, 内表面处的最大值是该处氚初始时刻浓度的2 1 + 2 / 2倍, 这里 1 和 2 为与氚的范德瓦尔斯常数相关的参数. 研究结果为储氚高压容器的强度安全性评估提供了前提.
    In order to understand the changes of mechanical properties of the wall materials and the carrying capacity of vessel which contains high pressure tritium, the spatiotemporal changes of tritium and helium-3 content in the wall should be studied during tritium storage. Taking into consideration the case that the outer surface of the vessel is with general mass transfer boundary condition and the tritium inside the vessel is van der Waals gas, and also taking into account both decay and permeation of tritium inside the vessel and decay and diffusion of tritium in the wall material, the analytical theoretical models of tritium and helium-3 content in the wall are developed and solved, and relevant theoretical formulas are deduced. Through analytical calculations, the curves of tritium and helium-3 content in the wall versus mass transfer coefficient of the outer surface, storage time and the spatial positions are plotted. Through analysis, a law called 21+2/2 time law of helium-3 content is put forward, where 1 and 2 are the coefficients which are related to van der Waals constant of tritium. The law is proposed: helium-3 content in the wall of the spherical high pressure vessel storing tritium which is in an open space rises along the radius from outer to inner, and the content radial gradient increases with storage time. If storage time is long enough, the helium-3 content at any point will approach to its final value, that is, a maximal value at a relevant point. The ratio of the maximum helium-3 content to the related initial tritium content is 21 + 2/2 at the inner surface. The obtained formulas and understandings can be used as a premise of the safety assessment of tritium stored vessel.
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号: 2008A0301010)资助的课题.
    • Funds: Project supported by the Science and Technology Development Fundation of China Academy of Engineering Physics (Grant No. 2008A0301010).
    [1]

    Marchi C S, Somerday B, Robinson S 2007 WSRC-STI 00579

    [2]

    Wang X L 2009 Journal of Nuclear and Radiochemistry 31 64 (in Chinese) [汪小琳 2009 核化学与放射化学 31 64]

    [3]

    Ma L M, Li Y Y 1988 Acta Metallurgica Sinica 24 B432

    [4]

    Fedov V V, Pokhmursky V I , Dyomina E V , Prusakova M D, Vinogradova N A 1995 Fusion Technology 28 1153

    [5]

    Shiraishi T ,Nishikawa M , Tamaguchi T, Kenmotsu K 1999 J. Nucl. Mater. 273 60

    [6]

    Chen C A, Wu S, Ni R F, Bo C M 2000 Journal of Nuclear and Radiochemistry 22 144 (in Chinese) [陈长安, 武胜, 倪然夫, 柏朝茂 2000 核化学与放射化学 22 144]

    [7]

    Chen C A, Wu S, Ni R F 2000 Atomic Energy Science and Technology 35 20 (in Chinese) [陈长安, 武胜, 倪然夫 2000 原子能科学技术 35 20]

    [8]

    Wang L B, Lu M Q, Li Y Y 2003 Acta Metallurgica Sinica 39 449 (in Chinese) [王隆保, 吕曼祺, 李依依 2003 金属学报 39 449]

    [9]

    Xie B, WENG K P 2009 Journal of Molecular Science 25 352 (in Chinese) [谢波, 翁葵平 2009 分子科学学报 25 352]

    [10]

    Xie C, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159 (in Chinese) [谢朝, 侯氢, 汪俊, 孙铁英, 龙兴贵, 罗顺忠 2008 物理学报 57 5159]

    [11]

    Zhang B L, Wang J, Hou Q 2011 China. Phys. B 20 036105

    [12]

    Liu Y D, Yin Y H, Tan Y, Sun Y, Mei J 2011 Sci. China Tech. Sci. 54 1521

    [13]

    Wang P X, Song J S 2002 Helium in Materials and the Permeation of Tritium (Beijing: National Defense Industry Press) p53 (in Chinese) [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第53页]

    [14]

    Hu X, Lv R D, Liu G J, Hei E C 2007 Physical Chemistry (Beijing: Higher Education Press) p11 (in Chinese) [胡英, 吕瑞东, 刘国杰, 黑恩成 2007 物理化学 (北京: 高等教育出版社) 第11页]

    [15]

    Jiang Y M, Xie H B, Guo F, Liu P, Li J 2005 Acta Phys. Sin. 54 5769 (in Chinese) [蒋益明, 谢亨博, 郭峰, 刘平, 李劲 2005 物理学报 54 5769]

    [16]

    Chen C A 2003 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [陈长安 2003 博士学位论文 (绵阳: 中国工程物理研究院)]

  • [1]

    Marchi C S, Somerday B, Robinson S 2007 WSRC-STI 00579

    [2]

    Wang X L 2009 Journal of Nuclear and Radiochemistry 31 64 (in Chinese) [汪小琳 2009 核化学与放射化学 31 64]

    [3]

    Ma L M, Li Y Y 1988 Acta Metallurgica Sinica 24 B432

    [4]

    Fedov V V, Pokhmursky V I , Dyomina E V , Prusakova M D, Vinogradova N A 1995 Fusion Technology 28 1153

    [5]

    Shiraishi T ,Nishikawa M , Tamaguchi T, Kenmotsu K 1999 J. Nucl. Mater. 273 60

    [6]

    Chen C A, Wu S, Ni R F, Bo C M 2000 Journal of Nuclear and Radiochemistry 22 144 (in Chinese) [陈长安, 武胜, 倪然夫, 柏朝茂 2000 核化学与放射化学 22 144]

    [7]

    Chen C A, Wu S, Ni R F 2000 Atomic Energy Science and Technology 35 20 (in Chinese) [陈长安, 武胜, 倪然夫 2000 原子能科学技术 35 20]

    [8]

    Wang L B, Lu M Q, Li Y Y 2003 Acta Metallurgica Sinica 39 449 (in Chinese) [王隆保, 吕曼祺, 李依依 2003 金属学报 39 449]

    [9]

    Xie B, WENG K P 2009 Journal of Molecular Science 25 352 (in Chinese) [谢波, 翁葵平 2009 分子科学学报 25 352]

    [10]

    Xie C, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159 (in Chinese) [谢朝, 侯氢, 汪俊, 孙铁英, 龙兴贵, 罗顺忠 2008 物理学报 57 5159]

    [11]

    Zhang B L, Wang J, Hou Q 2011 China. Phys. B 20 036105

    [12]

    Liu Y D, Yin Y H, Tan Y, Sun Y, Mei J 2011 Sci. China Tech. Sci. 54 1521

    [13]

    Wang P X, Song J S 2002 Helium in Materials and the Permeation of Tritium (Beijing: National Defense Industry Press) p53 (in Chinese) [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第53页]

    [14]

    Hu X, Lv R D, Liu G J, Hei E C 2007 Physical Chemistry (Beijing: Higher Education Press) p11 (in Chinese) [胡英, 吕瑞东, 刘国杰, 黑恩成 2007 物理化学 (北京: 高等教育出版社) 第11页]

    [15]

    Jiang Y M, Xie H B, Guo F, Liu P, Li J 2005 Acta Phys. Sin. 54 5769 (in Chinese) [蒋益明, 谢亨博, 郭峰, 刘平, 李劲 2005 物理学报 54 5769]

    [16]

    Chen C A 2003 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [陈长安 2003 博士学位论文 (绵阳: 中国工程物理研究院)]

  • [1] 邓永和, 张宇文, 谭恒博, 文大东, 高明, 吴安如. NiCu双金属纳米粒子的表面偏析、结构特征与扩散. 物理学报, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [2] 刘心卓, 王华光. 椭球胶体在圆球胶体体系中扩散行为的实验研究. 物理学报, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [3] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [4] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双. Al原子在Si表面扩散动力学的第一性原理研究. 物理学报, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [5] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [6] 李亚雄, 刘先贵, 胡志明, 高树生, 端祥刚, 常进. 页岩气滑脱、扩散传输机理耦合新方法. 物理学报, 2017, 66(11): 114702. doi: 10.7498/aps.66.114702
    [7] 高雪云, 王海燕, 李春龙, 任慧平, 李德超, 刘宗昌. 稀土La对bcc-Fe中Cu扩散行为影响的第一性原理研究. 物理学报, 2014, 63(24): 248101. doi: 10.7498/aps.63.248101
    [8] 向辉, 刘大欢, 阳庆元, 密建国, 仲崇立. 骨架柔性对短链烷烃分子在金属-有机骨架材料中扩散的影响. 物理学报, 2011, 60(9): 093602. doi: 10.7498/aps.60.093602
    [9] 陆裕东, 何小琦, 恩云飞, 王歆, 庄志强. 倒装芯片上金属布线/凸点互连结构中原子的定向扩散. 物理学报, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [10] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [11] 杨春, 冯玉芳, 余毅. 动力学研究AlN/α-Al2O3(0001)薄膜生长初期的吸附与扩散. 物理学报, 2009, 58(5): 3553-3559. doi: 10.7498/aps.58.3553
    [12] 李盛涛, 成鹏飞, 李建英. Al2O3单晶三明治结构的高温热激发电流. 物理学报, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [13] 张传瑜, 高 涛, 张云光, 周晶晶, 朱正和, 陈 波. 氦对LaNi5晶体结构的影响及其扩散特性研究. 物理学报, 2008, 57(7): 4379-4385. doi: 10.7498/aps.57.4379
    [14] 王永亮, 张 超, 唐 鑫, 张庆瑜. 表面Cu原子间相互作用对Cu(001)表面跳跃扩散行为的影响. 物理学报, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [15] 曹 博, 包良满, 李公平, 何山虎. Cu/SiO2/Si(111)体系中Cu和Si的扩散及界面反应. 物理学报, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [16] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [17] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程. 物理学报, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [18] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论. 物理学报, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
计量
  • 文章访问数:  5481
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-20
  • 修回日期:  2012-01-04
  • 刊出日期:  2012-08-05

/

返回文章
返回