搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究

司丽娜 郭丹 雒建斌

引用本文:
Citation:

氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究

司丽娜, 郭丹, 雒建斌

A molecular dynamics study of silica cluster cutting single crystalline silicon asperity

Si Li-Na, Guo Dan, Luo Jian-Bin
PDF
导出引用
  • 应用分子动力学模拟方法研究了氧化硅团簇在不同的切削 深度下切削单晶硅粗糙峰的过程, 考察了切削过程中粗糙峰和氧化硅团簇形态变化、团簇的受力状况、粗糙峰原子配位数和温度分布等. 模拟结果表明: 切削深度小于0.5 nm时, 被去除的材料以原子或者原子簇形式存在, 并黏附在颗粒表面被带走; 当切削深度增大至1 nm时, 材料的去除率增大, 并形成大的切屑. 在切削过程中, 由于压力和温度的升高, 粗糙峰切削区域的单晶硅转变为类似Si-Ⅱ相和Bct5-Si相的过渡结构, 在切削过程后的卸载阶段, 过渡结构由于压力和温度的下降转变为非晶态结构.
    The molecular dynamics simulation method is used to study the process of silica particle cutting the roughness surface at various cutting depths. The conditions of the asperity and the particle, force bearing state of particle, the distributions of coordination number and temperature in the asperity are investigated. The simulation results show that the material removal rate is small when the cutting depth is smaller than 0.5 nm, and the removed atoms sticking to the silica particle are in single atom or atom cluster form. When the cutting depth is larger than 1 nm, the material removal rate becomes larger; meanwhile a larger scrap is formed. The crystalline silicon is converted into a locally ordered transient structure which is similar to Si-Ⅱ and Bct5-Si with the increases of temperature and pressure in the cutting process; then the transient structure forms amorphous silicon directly as the temperature and pressure decrease after the cutting process.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB724201); 国家自然科学基金 (批准号: 91023016)和国家自然科学基金创新研究群体科学基金 (批准号: 51021064)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724201), the National Natural Science Foundation of China (Grant No. 91023016), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021064).
    [1]

    Wang L Y, Liu B, Song Z T, Liu W L, Feng S L, Huang D, Babu S V 2011 Chin. Phys. B 20 038102

    [2]

    Wang Y G, Zhao Y W 2008 Chin. Sci. Bull. 53 2084

    [3]

    Zhang W, Lu X C, Liu Y H, Pan G S, Luo J B 2009 Appl. Surf. Sci. 255 4114

    [4]

    Duan F L, Luo J B, Wen S Z 2005 Acta Phys. Sin. 54 2832 (in Chinese) [段芳莉, 雒建斌, 温诗铸 2005 物理学报 54 2832]

    [5]

    Han X S, Hu Y Z, Yu S Y 2009 Appl. Phys. A: Mater. Sci. Process. 95 899

    [6]

    Zhang C H, Luo J B, Wen S Z 2005 Acta Phys. Sin. 54 2123 (in Chinese) [张朝辉, 雒建斌, 温诗铸 2005 物理学报 54 2123]

    [7]

    Guo X G, Guo D M, Kang R K, Jin Z J 2006 Chin. J. Mech. Eng. 42 46 (in Chinese) [郭晓光, 郭东明, 康仁科, 金洙吉 2006 机械工程学报 42 46]

    [8]

    Kaufman F B, Thompson D B, Broadie R E, Jaso M A, Guthrie W L, Pearson D J, Small M B 1991 J. Electrochem. Soc. 138 3460

    [9]

    Zhao Y W, Chang L, Kim S H 2003 Wear 254 332

    [10]

    Cook L M 1990 J. Non-Cryst. Solids 120 152

    [11]

    Ye Y Y, Biswas R, Morris J R, Bastawros A, Chandra A 2003 Nanotechnology 14 390

    [12]

    Zhang L C, Tanaka H 1997 Wear 211 44

    [13]

    Chagarov E, Adams J B 2003 J. Appl. Phys. 94 3853

    [14]

    Liang Y C, Pen H M, Bai Q S 2009 Acta Metall. Sin. 45 1205 (in Chinese) [梁迎春, 盆洪民, 白清顺 2009 金属学报 45 1205]

    [15]

    Fang F Z, Wu H, Zhou W, Hu X T 2007 J. Mater. Process. Technol. 184 407

    [16]

    Zhu P Z, Hu Y Z, Ma T B, Wang H 2010 Appl. Surf. Sci. 256 7160

    [17]

    Watanabe T, Fujiwara H, Noguchi H, Hoshino T, Ohdomari I 1999 Jpn. J. Appl. Phys. 38 L366

    [18]

    Chen R L, Luo J B, Guo D, Lu X C 2008 J. Appl. Phys. 104 104907

    [19]

    Si L N, Guo D, Luo J B, Lu X C 2011 J. Appl. Phys. 109 084335

    [20]

    Chagarov E, Adams J B, Kieffer J 2004 Modell. Simul. Mater. Sci. Eng. 12 337

    [21]

    Duan F L, Wang J X, Luo J B, Wen S Z 2007 Acta Phys. Sin. 56 6552 (in Chinese) [段芳莉, 王家序, 雒建斌, 温诗铸 2007 物理学报 56 6552]

    [22]

    Piltz R O, Maclean J R, Clark S J, Ackland G J, Hatton P D, Crain J 1995 Phys. Rev. B 52 4072

    [23]

    Cheong W C D, Zhang L C 2000 Nanotechnology 11 173

    [24]

    Boyer L L, Kaxiras E, Feldman J L, Broughton J Q, Mehl M J 1991 Phys. Rev. Lett. 67 715

  • [1]

    Wang L Y, Liu B, Song Z T, Liu W L, Feng S L, Huang D, Babu S V 2011 Chin. Phys. B 20 038102

    [2]

    Wang Y G, Zhao Y W 2008 Chin. Sci. Bull. 53 2084

    [3]

    Zhang W, Lu X C, Liu Y H, Pan G S, Luo J B 2009 Appl. Surf. Sci. 255 4114

    [4]

    Duan F L, Luo J B, Wen S Z 2005 Acta Phys. Sin. 54 2832 (in Chinese) [段芳莉, 雒建斌, 温诗铸 2005 物理学报 54 2832]

    [5]

    Han X S, Hu Y Z, Yu S Y 2009 Appl. Phys. A: Mater. Sci. Process. 95 899

    [6]

    Zhang C H, Luo J B, Wen S Z 2005 Acta Phys. Sin. 54 2123 (in Chinese) [张朝辉, 雒建斌, 温诗铸 2005 物理学报 54 2123]

    [7]

    Guo X G, Guo D M, Kang R K, Jin Z J 2006 Chin. J. Mech. Eng. 42 46 (in Chinese) [郭晓光, 郭东明, 康仁科, 金洙吉 2006 机械工程学报 42 46]

    [8]

    Kaufman F B, Thompson D B, Broadie R E, Jaso M A, Guthrie W L, Pearson D J, Small M B 1991 J. Electrochem. Soc. 138 3460

    [9]

    Zhao Y W, Chang L, Kim S H 2003 Wear 254 332

    [10]

    Cook L M 1990 J. Non-Cryst. Solids 120 152

    [11]

    Ye Y Y, Biswas R, Morris J R, Bastawros A, Chandra A 2003 Nanotechnology 14 390

    [12]

    Zhang L C, Tanaka H 1997 Wear 211 44

    [13]

    Chagarov E, Adams J B 2003 J. Appl. Phys. 94 3853

    [14]

    Liang Y C, Pen H M, Bai Q S 2009 Acta Metall. Sin. 45 1205 (in Chinese) [梁迎春, 盆洪民, 白清顺 2009 金属学报 45 1205]

    [15]

    Fang F Z, Wu H, Zhou W, Hu X T 2007 J. Mater. Process. Technol. 184 407

    [16]

    Zhu P Z, Hu Y Z, Ma T B, Wang H 2010 Appl. Surf. Sci. 256 7160

    [17]

    Watanabe T, Fujiwara H, Noguchi H, Hoshino T, Ohdomari I 1999 Jpn. J. Appl. Phys. 38 L366

    [18]

    Chen R L, Luo J B, Guo D, Lu X C 2008 J. Appl. Phys. 104 104907

    [19]

    Si L N, Guo D, Luo J B, Lu X C 2011 J. Appl. Phys. 109 084335

    [20]

    Chagarov E, Adams J B, Kieffer J 2004 Modell. Simul. Mater. Sci. Eng. 12 337

    [21]

    Duan F L, Wang J X, Luo J B, Wen S Z 2007 Acta Phys. Sin. 56 6552 (in Chinese) [段芳莉, 王家序, 雒建斌, 温诗铸 2007 物理学报 56 6552]

    [22]

    Piltz R O, Maclean J R, Clark S J, Ackland G J, Hatton P D, Crain J 1995 Phys. Rev. B 52 4072

    [23]

    Cheong W C D, Zhang L C 2000 Nanotechnology 11 173

    [24]

    Boyer L L, Kaxiras E, Feldman J L, Broughton J Q, Mehl M J 1991 Phys. Rev. Lett. 67 715

  • [1] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [4] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [6] 朱敏, 李晓红, 李国强, 常利阳, 谢长鑫, 邱荣, 李家文, 黄文浩. 飞秒脉冲激光辐照对硅发光性能的影响. 物理学报, 2014, 63(5): 057801. doi: 10.7498/aps.63.057801
    [7] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究. 物理学报, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [8] 徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁. 单晶硅片中的位错在快速热处理过程中的滑移. 物理学报, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [9] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [10] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [11] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [12] 田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊. 新型添加剂对单晶硅表面金字塔形貌的影响. 物理学报, 2012, 61(6): 066803. doi: 10.7498/aps.61.066803
    [13] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [14] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究. 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [15] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [16] 曹莉霞, 尚家香, 张跃. 应力诱发NiAl单晶马氏体相变的分子动力学模拟. 物理学报, 2009, 58(10): 7307-7312. doi: 10.7498/aps.58.7307
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [19] 段芳莉, 王家序, 雒建斌, 温诗铸. 纳米粒子碰撞下的单晶硅表面非晶相变. 物理学报, 2007, 56(11): 6552-6556. doi: 10.7498/aps.56.6552
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  5017
  • PDF下载量:  821
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-04
  • 修回日期:  2012-02-05
  • 刊出日期:  2012-08-05

/

返回文章
返回