搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无序双层六角氮化硼量子薄膜的电子性质

肖化平 陈元平 杨凯科 魏晓林 孙立忠 钟建新

引用本文:
Citation:

无序双层六角氮化硼量子薄膜的电子性质

肖化平, 陈元平, 杨凯科, 魏晓林, 孙立忠, 钟建新

Electronic properties of disordered bilayer hexagonal boron nitride quantum films

Xiao Hua-Ping, Chen Yuan-Ping, Yang Kai-Ke, Wei Xiao-Lin, Sun Li-Zhong, Zhong Jian-Xin
PDF
导出引用
  • 基于安德森紧束缚模型,本文研究了无序双层六角氮化硼量子薄膜的电子性质. 数值计算结果表明在双层都无序掺杂的情况下,六角氮化硼量子薄膜的电子是局域的, 其表现为绝缘体性质;而对于单层掺杂(无论是氮原子还是硼原子)的双层六角氮化硼量子薄膜, 在能谱的带尾出现了持续的迁移率边.这就说明在单层掺杂的双层六角氮化硼量子薄膜中产生了 金属绝缘体转变.这一结果证实了有序-无序分区掺杂的理论模型,为理解及调控双层六角氮化硼量子薄膜 的电子性质提供了有益的理论指导.
    Based on the Anderson tight-binding model, the electronic properties of disordered bilayer hexagonal boron nitride quantum films are investigated. Our numerical results show that the electrons in a disordered bilayer hexagonal boron nitride quantum film are localized, presenting an insulating property. However, for the monolayer disordered bilayer hexagonal boron nitride quantum film, the energy spectrum has persistent mobility edges which are independent of the disorder strength. This indicates that a metal-insulator transition occurs in the monolayer disorder structure. This is similar to the case in an order-disorder separated quantum film. The results could offer useful information for understanding and manipulating the electronic properties of bilayer hexagonal boron nitride quantum films.
    • 基金项目: 国家自然科学基金(批准号: 11074213, 51176161, 51006086, 11074211); 湖南省自然科学基金省市联合项目(批准号: 10JJ9001); 湖南省高校创新平台开放基金项目(批准号: 09K034)和教育部新世纪优秀人才支持计划 (批准号: NCET-10-0169)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074213, 51176161, 51006086, 11074211 ), the Joint Funds of Hunan Provincial Natural Science Foundation of China (Grant No. 10JJ9001), the Open Fund based on innovation platform of Hunan colleges and universities (Grant No. 09K034), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0169).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Gunther S, Danhardt S, Wang B, Bocquet M L, Schmitt S, Wintterlin J 2011 Nano. Lett. 11 1895

    [4]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [5]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [6]

    Hu X H,Xu J M,Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [7]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [8]

    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker C W J 2002 Phys. Rev. Lett. 96 246802

    [9]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 19

    [11]

    Balandin1 A A 2011 Nature Materials 10 569

    [12]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V 2005 Proc. Natl Acad. Sci. USA 123 10451

    [13]

    Jin C H, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [14]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [15]

    Pauli T K, Bhattacharya P, Bose D N 1990 Appl. Phys. Lett. 56 2648

    [16]

    Li C, Bando Y, Zhi C Y, Huang Y, Golberg D 2009 Nanotechnology 20 385707

    [17]

    Li j, Gui G, Zhong J X 2008 J. Appl. Phys. 104 094311

    [18]

    Zheng F W, Zhou G, Liu Z R, Wu J, Duan W H, Gu B L, Zhang S B 2008 Phys. Rev. B 78 205415

    [19]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404

    [20]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [21]

    Chen Z G, Zou J, Liu G, Li F, Wang Y, Wang L, Yuan X L, Sekiguchi T, Cheng H M, Lu G Q 2008 ACS Nano. 2 2183

    [22]

    Michel K H, Verberck B 2009 Phys. Status Solidi b 246 2802

    [23]

    Pereira J M, Vasilopoulos J P, Peeters F M 2007 Nano Lett. 7 946

    [24]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [25]

    Li J, Gui G, Sun L Z, Zhong J X 2010 Acta Phys. Sin. 59 8820 (in Chinese) [李金, 桂贵, 孙立忠, 钟建新 2012 物理学报 59 8820]

    [26]

    Zhong J X, Stocks G M 2007 Phys. Rev. B 75 033410

    [27]

    Zhong J X, Stocks G M 2006 Nano Lett. 6 128

    [28]

    Shklovskii B I, Shapiro B, Sears B R, Lambrianides P, Shore H B 1993 Phys. Rev. B 47 11487

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Gunther S, Danhardt S, Wang B, Bocquet M L, Schmitt S, Wintterlin J 2011 Nano. Lett. 11 1895

    [4]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [5]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [6]

    Hu X H,Xu J M,Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [7]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [8]

    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker C W J 2002 Phys. Rev. Lett. 96 246802

    [9]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 19

    [11]

    Balandin1 A A 2011 Nature Materials 10 569

    [12]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V 2005 Proc. Natl Acad. Sci. USA 123 10451

    [13]

    Jin C H, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [14]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [15]

    Pauli T K, Bhattacharya P, Bose D N 1990 Appl. Phys. Lett. 56 2648

    [16]

    Li C, Bando Y, Zhi C Y, Huang Y, Golberg D 2009 Nanotechnology 20 385707

    [17]

    Li j, Gui G, Zhong J X 2008 J. Appl. Phys. 104 094311

    [18]

    Zheng F W, Zhou G, Liu Z R, Wu J, Duan W H, Gu B L, Zhang S B 2008 Phys. Rev. B 78 205415

    [19]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404

    [20]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [21]

    Chen Z G, Zou J, Liu G, Li F, Wang Y, Wang L, Yuan X L, Sekiguchi T, Cheng H M, Lu G Q 2008 ACS Nano. 2 2183

    [22]

    Michel K H, Verberck B 2009 Phys. Status Solidi b 246 2802

    [23]

    Pereira J M, Vasilopoulos J P, Peeters F M 2007 Nano Lett. 7 946

    [24]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [25]

    Li J, Gui G, Sun L Z, Zhong J X 2010 Acta Phys. Sin. 59 8820 (in Chinese) [李金, 桂贵, 孙立忠, 钟建新 2012 物理学报 59 8820]

    [26]

    Zhong J X, Stocks G M 2007 Phys. Rev. B 75 033410

    [27]

    Zhong J X, Stocks G M 2006 Nano Lett. 6 128

    [28]

    Shklovskii B I, Shapiro B, Sears B R, Lambrianides P, Shore H B 1993 Phys. Rev. B 47 11487

  • [1] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [5] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质. 物理学报, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [6] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] 宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰. 杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响. 物理学报, 2016, 65(4): 046102. doi: 10.7498/aps.65.046102
    [8] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [9] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [10] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [11] 阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪. BnY(n=1–11)团簇的结构和电子性质. 物理学报, 2014, 63(24): 243101. doi: 10.7498/aps.63.243101
    [12] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制. 物理学报, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [13] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究. 物理学报, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [14] 杨鑫鑫, 魏晓旭, 王军转, 施毅, 郑有炓. 高温氢退火还原V2O5制备二氧化钒薄膜及其性能的研究. 物理学报, 2013, 62(22): 227201. doi: 10.7498/aps.62.227201
    [15] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [16] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究. 物理学报, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [17] 王江龙, 葛志启, 李慧玲, 刘洪飞, 于威. 后钙钛矿CaRhO3的电子结构和磁学性质的第一性原理研究. 物理学报, 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [18] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [19] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [20] 毛华平, 王红艳, 朱正和, 唐永建. AunY(n=1—9)掺杂团簇的结构和电子性质研究. 物理学报, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
计量
  • 文章访问数:  5273
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-07
  • 修回日期:  2012-05-07
  • 刊出日期:  2012-09-05

/

返回文章
返回