搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位差图像复原技术研究

李斐

引用本文:
Citation:

相位差图像复原技术研究

李斐

Phase diversity image restoration

Li Fei
PDF
导出引用
  • 大气湍流、系统像差等因素会使入射光的波前发生畸变, 从而降低成像系统的成像质量. 相位差图像复原技术是针对波前畸变发展起来的图像复原方法, 它具有无需参考目标和退化函数、收敛性好等优点, 可以提高图像的分辨率和清晰度, 增加图像的信息量, 改善图像的视觉效果, 在图像复原领域有着广阔的应用前景. 本文对相位差图像复原技术进行了研究, 借用光学系统中光学传递函数、调制传递函数和点扩散函数的概念对相位差图像复原技术的性能进行了分析, 并进行了数值仿真和实验验证. 结果表明, 相位差图像复原技术不仅可以克服像差对成像质量的影响, 而且可以对截止频率以内的低频信息进行增强, 提高图像的对比度, 从而使获得的图像优于衍射受限系统所成的像.
    The image quality of the imaging system is often reduced by the wave-front aberrations which arises from a variety of sources including atmospheric turbulence, system aberration, and so on. Phase diversity image restoration is an image restoration technique that mainly aims to solve the problem of wave-front aberrations. This technique needs neither reference object nor the degraded function and has a good convergence. It can enhance the resolution and sharpness, increase the information content and improve the visual effect of the image, and has broad application prospect in the field of image restoration. In this paper, the phase diversity image restoration technique is studied, and its performance is analyzed in virtue of the concept of the optical transfer function, modulation transfer function and point spread function. Simulation and experimental results both show that phase diversity image restoration technique can not only reduce the influence of wavefront aberrations but also increase the information of low frequency within the cutoff frequency, and improve the contrast. So, the image acquired by phase diversity image restoration can be better than the image acquired by the diffraction limited system.
    [1]

    Shang J G, Jiao B L 2011 Application Research of Computers 28 785 (in Chinese) [商俊国, 焦斌亮 2011 计算机应用研究 28 785]

    [2]

    Wu X J 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [吴显金 2006 博士学位论文 (长沙: 国防科学技术大学) ]

    [3]

    Liu Z, Qiu Y H 1998 Acta Astronomica Sinica 39 217 (in Chinese) [刘忠, 邱耀辉 1998 天文学报 39 217]

    [4]

    Rao C H, Zhang X J 2002 Acta Opt. Sin. 22 789 (in Chinese) [饶长辉, 张学军 2002 光学学报 22 789]

    [5]

    Luo L, Wang L, Cheng W D, Shen M Z 2006 Acta Phys. Sin. 55 6708 (in Chinese) [罗林, 王黎, 程卫东, 沈忙作 2008 物理学报 55 6708]

    [6]

    Gonsalves R 1982 Opt. Engng. 21 829

    [7]

    Paxman R G, Schulz T J, Fienup J R 1992 J. Opt. Soc. Am. A 9 1072

    [8]

    Paxman R G, Seldin J H, Löfdahl M G 1996 Astrophysical Journal 466 1087

    [9]

    Seldin J H, Reiley M F, Paxman R G 1997 Proc. SPIE 3170 277

    [10]

    Smith M W 2003 Novel Optical Systems Design and Optimization VI 5174 60

    [11]

    Gilles L, Vogel C R, Bardsley J 2002 Inverse Problems 18 237

    [12]

    Nocedal J 1980 Mathematics of Computation 35 773

    [13]

    Li F, Rao C H 2010 Chinese J. Lasers 37 2813 (in Chinese) [李斐, 饶长辉 2010 中国激光 37 2813]

    [14]

    Zhao W Q, Chen S S, Feng Z D 2006 Acta Phys. Sin. 55 3363 (in Chinese) [赵维谦, 陈珊珊, 冯政德 2006 物理学报 55 3363]

    [15]

    Lu J, Li H, He Y, Shi G H, Zhang Y D 2011 Acta Phys. Sin. 60 034207 (in Chinese) [卢婧, 李昊, 何毅, 史 国华, 张雨东 2011 物理学报 60 034207]

    [16]

    Liu X M, Liu L R, Bai L H 2006 Chin. Phys. 15 708

  • [1]

    Shang J G, Jiao B L 2011 Application Research of Computers 28 785 (in Chinese) [商俊国, 焦斌亮 2011 计算机应用研究 28 785]

    [2]

    Wu X J 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [吴显金 2006 博士学位论文 (长沙: 国防科学技术大学) ]

    [3]

    Liu Z, Qiu Y H 1998 Acta Astronomica Sinica 39 217 (in Chinese) [刘忠, 邱耀辉 1998 天文学报 39 217]

    [4]

    Rao C H, Zhang X J 2002 Acta Opt. Sin. 22 789 (in Chinese) [饶长辉, 张学军 2002 光学学报 22 789]

    [5]

    Luo L, Wang L, Cheng W D, Shen M Z 2006 Acta Phys. Sin. 55 6708 (in Chinese) [罗林, 王黎, 程卫东, 沈忙作 2008 物理学报 55 6708]

    [6]

    Gonsalves R 1982 Opt. Engng. 21 829

    [7]

    Paxman R G, Schulz T J, Fienup J R 1992 J. Opt. Soc. Am. A 9 1072

    [8]

    Paxman R G, Seldin J H, Löfdahl M G 1996 Astrophysical Journal 466 1087

    [9]

    Seldin J H, Reiley M F, Paxman R G 1997 Proc. SPIE 3170 277

    [10]

    Smith M W 2003 Novel Optical Systems Design and Optimization VI 5174 60

    [11]

    Gilles L, Vogel C R, Bardsley J 2002 Inverse Problems 18 237

    [12]

    Nocedal J 1980 Mathematics of Computation 35 773

    [13]

    Li F, Rao C H 2010 Chinese J. Lasers 37 2813 (in Chinese) [李斐, 饶长辉 2010 中国激光 37 2813]

    [14]

    Zhao W Q, Chen S S, Feng Z D 2006 Acta Phys. Sin. 55 3363 (in Chinese) [赵维谦, 陈珊珊, 冯政德 2006 物理学报 55 3363]

    [15]

    Lu J, Li H, He Y, Shi G H, Zhang Y D 2011 Acta Phys. Sin. 60 034207 (in Chinese) [卢婧, 李昊, 何毅, 史 国华, 张雨东 2011 物理学报 60 034207]

    [16]

    Liu X M, Liu L R, Bai L H 2006 Chin. Phys. 15 708

  • [1] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [3] 雍佳伟, 田雨, 许克峰, 饶长辉. 一种结合图像复原技术的自适应光学系统控制方法. 物理学报, 2020, 69(6): 068701. doi: 10.7498/aps.69.20191536
    [4] 李鑫楠, 黄贺艳, 贾小宁, 马驷良. 基于指导滤波的图像盲复原算法. 物理学报, 2015, 64(13): 134202. doi: 10.7498/aps.64.134202
    [5] 周亮, 刘朝晖, 折文集. 可调谐相位板空域频域联合分析. 物理学报, 2015, 64(22): 224207. doi: 10.7498/aps.64.224207
    [6] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [7] 黄翔东, 孟天伟, 丁道贤, 王兆华. 前后向子分段相位差频率估计法. 物理学报, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [8] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [9] 相里斌, 张文喜, 伍洲, 吕笑宇, 李杨, 周志盛, 孔新新. 相干场成像技术接收镜精度对传递函数的影响. 物理学报, 2013, 62(22): 224201. doi: 10.7498/aps.62.224201
    [10] 石明珠, 许廷发, 梁炯, 李相民. 单幅模糊图像点扩散函数估计的梯度倒谱分析方法研究. 物理学报, 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [11] 罗群, 黄林海, 顾乃庭, 李斐, 饶长辉. 相位差波前检测方法应用于平移误差检测的实验研究. 物理学报, 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [12] 李斐, 饶长辉. 基于相位差混合处理方法的高分辨力成像技术. 物理学报, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [13] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [14] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] 孙明竹, 赵新, 卢桂章. 基于离焦的微操作机器人系统光轴方向深度测量. 物理学报, 2009, 58(9): 6248-6257. doi: 10.7498/aps.58.6248
    [16] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [17] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [18] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像. 物理学报, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [19] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [20] 西门纪业, 晏继文, 黄旭. 存在球差和失焦下电子光学传递函数和脉冲响应函数. 物理学报, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
计量
  • 文章访问数:  8165
  • PDF下载量:  1282
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-20
  • 修回日期:  2012-06-29
  • 刊出日期:  2012-12-05

/

返回文章
返回