搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铬和镍的添加对Fe3Al合金力学性能影响的DFT研究

牛雪莲 王立久 孙丹

引用本文:
Citation:

铬和镍的添加对Fe3Al合金力学性能影响的DFT研究

牛雪莲, 王立久, 孙丹

The DFT analyses of effect of chromium and nickel additions on the mechanical properties of Fe3Al based alloys

Niu Xue-Lian, Wang Li-Jiu, Sun Dan
PDF
导出引用
  • 利用第一原理研究了过渡金属元素 Cr 或 Ni 在 Fe3Al合金中的优先占位行为及其合金化效应. 计算结果表明: Cr 或 Ni 的取代有助于Fe3Al 合金体系更稳定, Cr 优先占据 FeI 位, Ni 优先占据 FeII位. Fe2NiAl-II 具有最小的剪切模量G, 杨氏模量E和G/B值, 因此Fe2NiAl-II合金的韧性、延展性最佳. 态密度和电荷密度图表明, 过渡金属元素的取代提高了它们与近邻基体原子之间的相互作用, 削弱了Al和Fe的相互作用.
    Site preference behaviors of transition metal (TM) Cr and Ni in Fe3Al alloy and alloying effect are studied by using first-principles. Computational results show that the addition of TM is beneficial to the improvement of the stability of Fe3Al alloy; Cr atoms prefer to stay at FeI sites, while Ni atoms occupy FeII sites. Our investigations reveal that Fe2NiAl has lower bulk modulus B, shear modulus G and B/G than other (Fe3-yXy)Al (X=Cr, Ni; y=0,1,2) alloys, which turns out to be a brittle alloy. The analyses of density of states and electronic charge density indicate that additional TM improves the interaction between TM and neighboring host atoms of Fe3Al but weakens the interaction between Al and Fe.
    • 基金项目: 十一五国家科技支撑计划重大项目 (批准号: 2006BAJ04A04)和辽宁省教育厅(批准号: 2008282)资助的课题.
    • Funds: Project supported by the National Mega-project of Scientific and Technical Supporting Programs, Ministry of Science and Technology of China (Grant No. 2006BAJ04A04) and the Education Department of Liaoning Province, China (Grant No. 2008282).
    [1]

    Liu C T, Lee E H, Mckamey C G 1989 Scr. Metall. 23 875

    [2]

    Mckamey C G, Maziasz P J, Jones J W 1992 J. Mater. Res. 7 2089

    [3]

    Mckamey C G, Liu C T 1990 Scr. Metall. 24 2119

    [4]

    Jiang C, Sordelet D J, Gleeson B 2006 Scripta. Mater. 54 405

    [5]

    Jimenez J A, Frommeyer G 1996 Mater. Sci. Eng. A 220 93

    [6]

    Carleton R, George E P, Zee R H 1995 Intermetallics 3 433

    [7]

    Zhong X P, Deng W, Tang Y S, Xiong L Y, Wang S H, Guo J T, Long Q W 1998 Acta. Phys. Sin. 47 1734 (in Chinese) [钟夏平, 邓文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威 1998 物理学报 47 1734]

    [8]

    Levin L, Berner A, Ginzburg A, Katsman A 1995 High Temperature and Materials Science 34 19

    [9]

    Wu R Q, Zhong L P, Chen L J, Freeman A J 1996 Phys. Rev. B 54 7084

    [10]

    Fuks D, Dorfman S, Liubich V, Kutsenko L 2002 Int. J. Quantum Chem. 90 1478

    [11]

    Kiv A, Fuks D, Dorfman S 2004 Mater. Sci. Eng. A 387-389 931

    [12]

    Zhang W J, Sundar R S, Deevi S C 2004 Intermetallics 12 893

    [13]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Pulay P 1980 Chem. Phys. Lett. 73 393

    [17]

    Das G P, Rao B K, Jena P, Deevi S C 2002 Phys. Rev. B 66 184203

    [18]

    Hsu L S, Wang Y K, Guo G Y, Lue C S 2002 Phys. Rev. B 66 205203

    [19]

    Reddy B V, Sastry D H, Deevi S C, Khanna S N 2001 Phys. Rev. B 64 224419

    [20]

    Born M 1942 Cambridge Phil. Soc. 36 82

    [21]

    Hill R 1952 Proceedings of the Physical Society of London Section A 65 349

    [22]

    Chen N X, Ge X J, Zhang W Q, Zhu F W 1998 Phys. Rev. B 57 14203

    [23]

    Jhi S H, Ihm J, Louie S G, Cohen M L 1999 Nature 399 132

    [24]

    Pugh S F 1954 Philos. Mag. 45 823

    [25]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345

    [26]

    Chen J, Li Y, Shang J X, Xu H B 2009 Chin. Phys. Lett. 26 407101

    [27]

    Li C B, Li M K, Yin D, Liu F Q, Fan X J 2005 Chin. Phys. 14 2287

  • [1]

    Liu C T, Lee E H, Mckamey C G 1989 Scr. Metall. 23 875

    [2]

    Mckamey C G, Maziasz P J, Jones J W 1992 J. Mater. Res. 7 2089

    [3]

    Mckamey C G, Liu C T 1990 Scr. Metall. 24 2119

    [4]

    Jiang C, Sordelet D J, Gleeson B 2006 Scripta. Mater. 54 405

    [5]

    Jimenez J A, Frommeyer G 1996 Mater. Sci. Eng. A 220 93

    [6]

    Carleton R, George E P, Zee R H 1995 Intermetallics 3 433

    [7]

    Zhong X P, Deng W, Tang Y S, Xiong L Y, Wang S H, Guo J T, Long Q W 1998 Acta. Phys. Sin. 47 1734 (in Chinese) [钟夏平, 邓文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威 1998 物理学报 47 1734]

    [8]

    Levin L, Berner A, Ginzburg A, Katsman A 1995 High Temperature and Materials Science 34 19

    [9]

    Wu R Q, Zhong L P, Chen L J, Freeman A J 1996 Phys. Rev. B 54 7084

    [10]

    Fuks D, Dorfman S, Liubich V, Kutsenko L 2002 Int. J. Quantum Chem. 90 1478

    [11]

    Kiv A, Fuks D, Dorfman S 2004 Mater. Sci. Eng. A 387-389 931

    [12]

    Zhang W J, Sundar R S, Deevi S C 2004 Intermetallics 12 893

    [13]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Pulay P 1980 Chem. Phys. Lett. 73 393

    [17]

    Das G P, Rao B K, Jena P, Deevi S C 2002 Phys. Rev. B 66 184203

    [18]

    Hsu L S, Wang Y K, Guo G Y, Lue C S 2002 Phys. Rev. B 66 205203

    [19]

    Reddy B V, Sastry D H, Deevi S C, Khanna S N 2001 Phys. Rev. B 64 224419

    [20]

    Born M 1942 Cambridge Phil. Soc. 36 82

    [21]

    Hill R 1952 Proceedings of the Physical Society of London Section A 65 349

    [22]

    Chen N X, Ge X J, Zhang W Q, Zhu F W 1998 Phys. Rev. B 57 14203

    [23]

    Jhi S H, Ihm J, Louie S G, Cohen M L 1999 Nature 399 132

    [24]

    Pugh S F 1954 Philos. Mag. 45 823

    [25]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345

    [26]

    Chen J, Li Y, Shang J X, Xu H B 2009 Chin. Phys. Lett. 26 407101

    [27]

    Li C B, Li M K, Yin D, Liu F Q, Fan X J 2005 Chin. Phys. 14 2287

计量
  • 文章访问数:  5465
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-23
  • 修回日期:  2012-09-12
  • 刊出日期:  2013-02-05

/

返回文章
返回