搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响

卿绍伟 鄂鹏 段萍

引用本文:
Citation:

壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响

卿绍伟, 鄂鹏, 段萍

Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster

Qing Shao-Wei, E Peng, Duan Ping
PDF
导出引用
  • 为进一步揭示霍尔推力器放电通道绝缘壁面鞘层的特性, 利用考虑了壁面二次电子分布函数的一维稳态流体鞘层模型, 研究了壁面二次电子发射对近壁双鞘特性的影响. 分析结果表明, 由于壁面发射的二次电子对近壁鞘层中的电子密度有增加作用, 存在一个临界二次电子发射系数σdc使得: 当σ≤σdc时, 鞘层为单层的正离子鞘结构; 当σ>σdc时, 鞘层表现为双层的正离子鞘和电子鞘相连结构, 连接点对应于垂直于壁面方向上电势分布的拐点. 然而, 当σ进一步增大到0.999时, 鞘层转变为三层的正离子鞘-电子鞘-正离子鞘交替结构. 数值结果表明: 随着σ的增加, 电子鞘与离子鞘的连接点向远离壁面的方向移动, 电子鞘的厚度逐渐增加; 随着壁面出射电子能量系数a的增加, 近壁区鞘层的厚度也逐渐增加.
    To further reveal the characteristics of sheath near the dielectric wall in Hall thruster discharge channel, a one-dimensional fluid sheath model combined with the velocity distribution function of electron emitted from wall is used to study the influence of secondary electron emission yield (SEEy) σ on the characteristics of double sheath near wall. Analytic results show that because of the contribution of secondary electron flux to the density of sheath electron, the sheath presents single-layer positive ion sheath formation when σ is lower than a critical SEEy σdc, and also presents double-layers formation that joins with positive ion sheath and electron sheath when σ>σdc. However, when σ further increases to 0.999, the sheath presents the formation of three-layers that are alternated by positive ion sheath, electron sheath and positive ion sheath. Numerical results also indicate that with the increase of σ, the joining point between positive ion sheath and electron sheath moves away from wall, and the thickness of electron sheath increases obviously.
    • 基金项目: 中央高校基本科研基金(批准号: 0903005203189) 、国家自然科学基金 (批准号: 11005025, 10975026, 11275034) 、哈尔滨工业大学科学研究创新基金 (批准号: HITNSRIF2009044) 和辽宁省科学技术计划重点项目 (批准号: 2011224007) 资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 0903005203189), the National Natural Science Foundation of China (Grant Nos. 11005025, 10975026, 11275034), the Scientific Research Innovation Foundation of Harbin Institution of Technology, China (Grant No. HITNSRIF2009044), and the Key Project of the Scientific Technology Program of Liaoning Province (Grant No. 2011224007).
    [1]

    Kim V 1998 J. Propul Power. 14 736

    [2]

    Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1

    [3]

    Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion conference (Electric Rocket Propulsion Society, Cleveland, OH), Paper No. IEPC 97 056

    [4]

    Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397

    [5]

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 3 (in Chinese) [于达仁, 张凤奎, 李鸿, 刘辉 2009 物理学报 58 3]

    [6]

    Hobbs G D, Wesson J A 1967Plasma Phys. 9 85

    [7]

    Schwager L A 1993 Phys. Fluids B 5 631

    [8]

    Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506

    [9]

    Ahedo E 2002 Phys. Plasmas 9 4340

    [10]

    Ahedo E, Parra F I 2005 Phys. Plasmas 12 073503

    [11]

    Ahedo E, DePablo V 2007 Phys. Plasmas 14 083501

    [12]

    Yu D R, Qing S W, Wang X G, Ding Y J, Duan P 2011 Acta Phys. Sin. 60 025204 (in Chinese) [于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍 2011 物理学报 60 025204]

    [13]

    Duan P, Li X, E Peng, Qing S W 2011 Acta Phys. Sin. 60 125203 (in Chinese) [段萍, 李肸, 鄂鹏, 卿绍伟 2011 物理学报 60 125203]

    [14]

    Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. and Technol. 11 57

    [15]

    Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 Phys. Plasmas 13 014501

    [16]

    Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 IEEE Trans. Plasma Sci. 34 815

    [17]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 物理学报 58 8432]

    [18]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York Consultants Bureau, New York) p241

    [19]

    Taccogna F, Longo S, Capitelli M 2004 Vacuum 73 89

    [20]

    Ahedo E, De Pablo V 2007 Phys. Plasmas 14 083501

    [21]

    Barral S, Makowski K, Peradzynski Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137

    [22]

    Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299

  • [1]

    Kim V 1998 J. Propul Power. 14 736

    [2]

    Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1

    [3]

    Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion conference (Electric Rocket Propulsion Society, Cleveland, OH), Paper No. IEPC 97 056

    [4]

    Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397

    [5]

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 3 (in Chinese) [于达仁, 张凤奎, 李鸿, 刘辉 2009 物理学报 58 3]

    [6]

    Hobbs G D, Wesson J A 1967Plasma Phys. 9 85

    [7]

    Schwager L A 1993 Phys. Fluids B 5 631

    [8]

    Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506

    [9]

    Ahedo E 2002 Phys. Plasmas 9 4340

    [10]

    Ahedo E, Parra F I 2005 Phys. Plasmas 12 073503

    [11]

    Ahedo E, DePablo V 2007 Phys. Plasmas 14 083501

    [12]

    Yu D R, Qing S W, Wang X G, Ding Y J, Duan P 2011 Acta Phys. Sin. 60 025204 (in Chinese) [于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍 2011 物理学报 60 025204]

    [13]

    Duan P, Li X, E Peng, Qing S W 2011 Acta Phys. Sin. 60 125203 (in Chinese) [段萍, 李肸, 鄂鹏, 卿绍伟 2011 物理学报 60 125203]

    [14]

    Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. and Technol. 11 57

    [15]

    Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 Phys. Plasmas 13 014501

    [16]

    Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 IEEE Trans. Plasma Sci. 34 815

    [17]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 物理学报 58 8432]

    [18]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York Consultants Bureau, New York) p241

    [19]

    Taccogna F, Longo S, Capitelli M 2004 Vacuum 73 89

    [20]

    Ahedo E, De Pablo V 2007 Phys. Plasmas 14 083501

    [21]

    Barral S, Makowski K, Peradzynski Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137

    [22]

    Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 杨三祥, 郭宁, 贾艳辉, 耿海, 高俊, 刘家涛, 刘士永, 杨盛林. 霍尔推力器中呼吸振荡激发机理及影响因素. 物理学报, 2023, 72(8): 085201. doi: 10.7498/aps.72.20230009
    [3] 杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏. 径向磁场对霍尔推力器性能影响的数值模拟研究. 物理学报, 2022, 71(10): 105201. doi: 10.7498/aps.71.20212386
    [4] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响. 物理学报, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [8] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [9] 段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟. 霍尔推进器壁面材料二次电子发射及鞘层特性. 物理学报, 2014, 63(8): 085204. doi: 10.7498/aps.63.085204
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [12] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究. 物理学报, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [13] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响. 物理学报, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [14] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [15] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [16] 邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究. 物理学报, 2011, 60(2): 025213. doi: 10.7498/aps.60.025213
    [17] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响. 物理学报, 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [18] 鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国. 真空背压对霍尔推力器放电特性影响的实验研究. 物理学报, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [19] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究. 物理学报, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [20] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
计量
  • 文章访问数:  5282
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-13
  • 修回日期:  2012-10-24
  • 刊出日期:  2013-03-05

/

返回文章
返回