搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

七芯及十九芯大模场少模光纤的特性研究和比对分析

林桢 郑斯文 任国斌 简水生

引用本文:
Citation:

七芯及十九芯大模场少模光纤的特性研究和比对分析

林桢, 郑斯文, 任国斌, 简水生

Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers

Lin Zhen, Zheng Si-Wen, Ren Guo-Bin, Jian Shui-Sheng
PDF
导出引用
  • 提出了一种新型的多芯大模场少模光纤.包含缺失空气孔的特殊结构使其具有独特的少模特性, 仅传输HE11模和HE21模.分析表明七芯大模场少模光纤能维持稳定的双模式运转, 且基模有效面积可达866.54 μm2. 系统研究了光纤结构参数影响模式特性和基模有效面积的规律, 并分析了纤芯数目增加带来的性能相似性和差异性–-进阶的十九芯大模场少模光纤在继承少模特性的同时, 模场面积大大增加, 其基模有效面积可高达3617.55 μm2. 对比已报道的少模光纤, 多芯大模场少模光纤获得了更大的有效面积, 并具有良好的弯曲特性, 有望被用于更高功率的光纤放大器、光纤激光器以及高速大容量光纤传输系统中.
    A novel multi-core large-mode-area few-mode fiber (MC-LMA-FMF) is proposed in this paper. The special structure of air holes makes it operate in few modes (HE11 and HE21 mode only). Numerical analysis shows that the 7-core-LMA-FMF can maintain a stable dual-mode operation and the effective area of the fundamental mode can reach 866.54 μm2. The regular pattern that fiber structure parameters affect mode characteristics and the effective area is investigated, and the similarities and differences brought in by increasing the number of cores is also analyzed. The advanced 19-core-LMA-FMF inherits the few-mode characteristic, meanwhile, the effective area of the fundamental mode can be as high as 3617.55 μm2. Compared with the reported few-mode fibers, MC-LMA-FMF obtains a large effective area and good bending characteristics. These advantages enable this new type of fiber to be a potential candidate for high-speed large-capacity optical fiber transmission systems or high power fiber amplifiers and lasers.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB328206)、国家自然科学基金重点项目(批准号: 61275092)、国家自然科学基金(批准号: 61178008)、教育部科学技术研究重大项目基金(批准号: 210267)和中央高校基本科研业务费专项资金资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB328206), the Key Program of the National Natural Science Foundation of China (Grant No. 61275092), the National Natural Science Foundation of China (Grant No. 61178008), the Foundation for Key Program of Ministry of Education, China (Grant No. 210267), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.
    [1]

    Garth S J, Pask C 1992 J. Opt. Soc. Am. B 9 243

    [2]

    Yaman F, Bai N, Huang Y K, Huang M F, Zhu B, Wang T, Li G F 2010 Opt. Express 18 21342

    [3]

    Yaman F, Bai N, Zhu B Y, Wang T, Li G F 2010 Opt. Express 18 13250

    [4]

    Bai N, Ip E, Huang Y K, Mateo E, Yaman F 2012 Opt. Express 20 2668

    [5]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle C A, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697

    [6]

    Wang C C, Zhang F, Tong Z, Ning T G, Jian S S 2008 Acta Phys. Sin. 57 5035 (in Chinese) [王春灿, 张帆, 童治, 宁提纲, 简水生 2008 物理学报 57 5035]

    [7]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2011 Opt. Express 19 16576

    [8]

    Fini J M, Zhu B, Taunay T F, Yan M F 2010 Opt. Express 18 15122

    [9]

    Fini J M 2011 Opt. Express 19 4042

    [10]

    Vogel M M, Abdou-Ahmed M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [11]

    Hayashi T, Sasaki T, Sasaoka E 2012 Optical Fiber Communication Conference Los Angeles, U.S.A, March 6-8, 2012 pOTu1D.4

    [12]

    Takenaga K, Matsuo S, Saitoh K, Koshiba M 2012 Optical Fiber Communication Conference Los Angeles, U.S.A, March 6-8, 2012 pOTu1D.5

    [13]

    Zhu B, Taunay T F, Yan M F, Fini J M, Fisheyn M, Monberg E M, Dimarcello F V 2010 Opt. Express 18 11117

    [14]

    Zhu B, Taunay T, Fisheyn M, Liu X, Chandrasekhar S, Yan M, Fini J, Monberg E, Dimarcello F 2011 Optical Fiber Communication Conference Los Angeles, U.S.A, March 6-8, 2012 pPDPB.7

    [15]

    Richardson D J, Britton P, Taverner D 1997 Elec. Lett. 33 1955

    [16]

    Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4036 (in Chinese) [郭艳艳, 侯蓝田 2010 物理学报 59 4036]

  • [1]

    Garth S J, Pask C 1992 J. Opt. Soc. Am. B 9 243

    [2]

    Yaman F, Bai N, Huang Y K, Huang M F, Zhu B, Wang T, Li G F 2010 Opt. Express 18 21342

    [3]

    Yaman F, Bai N, Zhu B Y, Wang T, Li G F 2010 Opt. Express 18 13250

    [4]

    Bai N, Ip E, Huang Y K, Mateo E, Yaman F 2012 Opt. Express 20 2668

    [5]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle C A, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697

    [6]

    Wang C C, Zhang F, Tong Z, Ning T G, Jian S S 2008 Acta Phys. Sin. 57 5035 (in Chinese) [王春灿, 张帆, 童治, 宁提纲, 简水生 2008 物理学报 57 5035]

    [7]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2011 Opt. Express 19 16576

    [8]

    Fini J M, Zhu B, Taunay T F, Yan M F 2010 Opt. Express 18 15122

    [9]

    Fini J M 2011 Opt. Express 19 4042

    [10]

    Vogel M M, Abdou-Ahmed M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [11]

    Hayashi T, Sasaki T, Sasaoka E 2012 Optical Fiber Communication Conference Los Angeles, U.S.A, March 6-8, 2012 pOTu1D.4

    [12]

    Takenaga K, Matsuo S, Saitoh K, Koshiba M 2012 Optical Fiber Communication Conference Los Angeles, U.S.A, March 6-8, 2012 pOTu1D.5

    [13]

    Zhu B, Taunay T F, Yan M F, Fini J M, Fisheyn M, Monberg E M, Dimarcello F V 2010 Opt. Express 18 11117

    [14]

    Zhu B, Taunay T, Fisheyn M, Liu X, Chandrasekhar S, Yan M, Fini J, Monberg E, Dimarcello F 2011 Optical Fiber Communication Conference Los Angeles, U.S.A, March 6-8, 2012 pPDPB.7

    [15]

    Richardson D J, Britton P, Taverner D 1997 Elec. Lett. 33 1955

    [16]

    Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4036 (in Chinese) [郭艳艳, 侯蓝田 2010 物理学报 59 4036]

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20231785
    [2] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [3] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计. 物理学报, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [4] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析. 物理学报, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [5] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [6] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [7] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [8] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [10] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [11] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [12] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [13] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究. 物理学报, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [14] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [15] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [16] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [17] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [18] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析. 物理学报, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [19] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [20] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
计量
  • 文章访问数:  5515
  • PDF下载量:  1372
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-30
  • 修回日期:  2012-10-19
  • 刊出日期:  2013-03-05

/

返回文章
返回