搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO/Diamond/Si结构中声表面波传播特性分析

周振凯 韦利明 丰杰

引用本文:
Citation:

ZnO/Diamond/Si结构中声表面波传播特性分析

周振凯, 韦利明, 丰杰

Simulation of characteristics of ZnO/diamond/Si structure surface acoustic wave

Zhou Zhen-Kai, Wei Li-Ming, Feng Jie
PDF
导出引用
  • 基于递归刚度矩阵方法, 建立了多层结构声表面波表面有效介电常数模型, 计算出了ZnO/Si结构声表面波的相速度频散特性, 与实验结果符合较好, 表明本文所建模型的准确性和有效性. 进一步计算得到了三层结构(ZnO/Diamond/Si)声表面波的相速度和机电耦合系数的频散规律, 获得此结构最优的高波速和高机电耦合系数组合及达到最优组合所需控制的变量, 为高频高性能声表面波器件设计和优化提供了有益参考.
    Based on the recursive stiffness matrix method, the effective surface permittitivity model of multilayered surface acoustic wave structure is established. By this model, the frequency dispersive characteristic of phase velocity for the ZnO/Si layered structure is calculated. The calculation results are in agreement with the experimental results, which verifies the effectiveness and accuracy of the model. Furthermore, the model is also established for the determination of the phase velocity and electromechanical coupling coefficients of ZnO/Diamond/Si structure. The best combination of high velocity and high coupling coefficient of the structure is obtained, which provides a good reference for the design of a high-performance and high-capability surface acoustic wave device.
    • 基金项目: 中国工程物理研究院科学基金(批准号: 2010A0302013)资助的课题.
    • Funds: Project supported by the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2010A0302013).
    [1]

    Campell K C 1998 SAW for Mobile and Wireless Communication (San Diego: Academic) p5

    [2]

    Mortet V, Elmazria O, Nesladek M, Assouar M B, Vanhoyland G, Haen D J, D Olieslaeger M, Alnot P 2002 Appl. Phys. Lett. 81 1720

    [3]

    Siemens M, Li Q, Murnane M, Kapteyn H, Yang R G, Anderson E, Nelson K 2009 Appl. Phys. Lett. 94 093103-1

    [4]

    Hashimoto K 2000 Surface Wave Devices in Telecommunications: Modeling and Simulation (New York: Springer) p110

    [5]

    Nakahata H, Higaki K, Hachigo A, Shikata S, Fujimori N, Takahashi Y, Kajiwara T, Yamamoto Y 1994 Jpn. J. Appl. Phys. 44 324

    [6]

    Nakahata H, Hachigo A, Higaki K, Fujii, Shikata S, Fujimori N 1995 IEEE Trans. Ultras. Ferroelectr. Frequency Control 42 362

    [7]

    Campbell J J, Jones W R1968 IEEE Trans. Son. Ultrason. 15 209

    [8]

    Adler E L 1994 IEEE Trans. Ultras. Ferroelectr. Frequency Control 41 699

    [9]

    Wu T T, Chen Y Y 2002 IEEE Trans. Ultras. Ferroelectr. Frequency Control 49 142

    [10]

    Wang L, Rokhlin S I 2002 Appl. Phys. Lett. 81 4050

    [11]

    Wang L, Rokhlin S I 2004 J. Mech. Phys. Solids 52 2473

    [12]

    Wang L, Rokhlin S I 2004 IEEE Trans. Ultras. Ferroelectr. Frequency Control 51 453

    [13]

    Yang G, Santos Paulo V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos Paulo V 2007 物理学报 56 3515]

    [14]

    Sun C W, Liu Z W, Qin F W, Zhang Q Y, Liu K, Wu S F 2006 Acta Phys. Sin. 55 1390 (in Chinese) [孙成伟, 刘志文, 秦福文, 张庆瑜, 刘琨, 吴世法 2006 物理学报 55 1390]

    [15]

    Milsom R F, Reilly N H C, Redwood M 1977 IEEE Trans. Son. Ultrason. 24 147

    [16]

    Clorennec D, Royer D 2003 Appl. Phys. Lett. 82 4608

    [17]

    Smith P 2001 IEEE Trans. Ultrason. Ferroelectr. Frequency Control 48 171

    [18]

    Le Brizoual L, Elmazria O, Sarry F, El Hakiki M, Talbi A, Alnot P 2006 Ultrasonics 45 100

    [19]

    El Hakiki M, Elmazria O, Assouar M B, Mortet V, Le Brizoual L, Vanecek M, Alnot P 2005 Diamond and Related Mater. 14 1175

  • [1]

    Campell K C 1998 SAW for Mobile and Wireless Communication (San Diego: Academic) p5

    [2]

    Mortet V, Elmazria O, Nesladek M, Assouar M B, Vanhoyland G, Haen D J, D Olieslaeger M, Alnot P 2002 Appl. Phys. Lett. 81 1720

    [3]

    Siemens M, Li Q, Murnane M, Kapteyn H, Yang R G, Anderson E, Nelson K 2009 Appl. Phys. Lett. 94 093103-1

    [4]

    Hashimoto K 2000 Surface Wave Devices in Telecommunications: Modeling and Simulation (New York: Springer) p110

    [5]

    Nakahata H, Higaki K, Hachigo A, Shikata S, Fujimori N, Takahashi Y, Kajiwara T, Yamamoto Y 1994 Jpn. J. Appl. Phys. 44 324

    [6]

    Nakahata H, Hachigo A, Higaki K, Fujii, Shikata S, Fujimori N 1995 IEEE Trans. Ultras. Ferroelectr. Frequency Control 42 362

    [7]

    Campbell J J, Jones W R1968 IEEE Trans. Son. Ultrason. 15 209

    [8]

    Adler E L 1994 IEEE Trans. Ultras. Ferroelectr. Frequency Control 41 699

    [9]

    Wu T T, Chen Y Y 2002 IEEE Trans. Ultras. Ferroelectr. Frequency Control 49 142

    [10]

    Wang L, Rokhlin S I 2002 Appl. Phys. Lett. 81 4050

    [11]

    Wang L, Rokhlin S I 2004 J. Mech. Phys. Solids 52 2473

    [12]

    Wang L, Rokhlin S I 2004 IEEE Trans. Ultras. Ferroelectr. Frequency Control 51 453

    [13]

    Yang G, Santos Paulo V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos Paulo V 2007 物理学报 56 3515]

    [14]

    Sun C W, Liu Z W, Qin F W, Zhang Q Y, Liu K, Wu S F 2006 Acta Phys. Sin. 55 1390 (in Chinese) [孙成伟, 刘志文, 秦福文, 张庆瑜, 刘琨, 吴世法 2006 物理学报 55 1390]

    [15]

    Milsom R F, Reilly N H C, Redwood M 1977 IEEE Trans. Son. Ultrason. 24 147

    [16]

    Clorennec D, Royer D 2003 Appl. Phys. Lett. 82 4608

    [17]

    Smith P 2001 IEEE Trans. Ultrason. Ferroelectr. Frequency Control 48 171

    [18]

    Le Brizoual L, Elmazria O, Sarry F, El Hakiki M, Talbi A, Alnot P 2006 Ultrasonics 45 100

    [19]

    El Hakiki M, Elmazria O, Assouar M B, Mortet V, Le Brizoual L, Vanecek M, Alnot P 2005 Diamond and Related Mater. 14 1175

计量
  • 文章访问数:  5627
  • PDF下载量:  1420
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-10
  • 修回日期:  2012-12-11
  • 刊出日期:  2013-05-05

/

返回文章
返回