搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开孔矩形腔体的近场电磁屏蔽效能研究

焦重庆 牛帅

引用本文:
Citation:

开孔矩形腔体的近场电磁屏蔽效能研究

焦重庆, 牛帅

Shielding effectiveness of an apertured rectangular cavity against the near-field electromagnetic waves

Jiao Chong-Qing, Niu Shuai
PDF
导出引用
  • 基于扩展的等效电路方法, 建立了电偶极子和磁偶极子天线近场照射下开孔矩形腔体电磁屏蔽效能计算的近似解析模型, 计算分析了场源–腔体距离对电场和磁场屏蔽效能的影响规律. 结果表明在近场区, 屏蔽效能随场源–腔体距离的减小而明显减小, 近场屏蔽效能小于远场屏蔽效能. 基于Bethe小孔耦合理论, 得出了描述近场和远场屏蔽效能关系的解析公式, 并用该公式检验了等效电路方法计算结果的可信性.
    The shielding effectiveness of an apertured rectangular cavity against the near-field waves of both electric and magnetic dipoles is investigated theoretically by using an extended equivalent circuit method. Both electric and magnetic shielding effectivenesses are calculated as functions of distance between the dipoles and the enclosure. It is shown that the near-field shielding effectiveness is lower than the far-field (plane-wave) shielding effectiveness. Also, in the near-field region, the shielding effectiveness will reduce obviously with the decrease of the source-to-enclosure distance. Based on Bethe's small aperture coupling theory, analytical formulas are presented to describe the quantitative relation between the near-field and the far-field shielding effectivenesses. It is shown that the results from equivalent circuit method are in good agreement with the relation obtained from the Bethe's theory.
    • 基金项目: 国家自然科学基金(批准号: 51037001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51037001).
    [1]

    He J L 2010 Introduction to Electromagnetic Compatibility (Beijing: Science Press) (in Chinese) [何金良 2010 电磁兼容概论 (北京: 科学出版社)]

    [2]

    Gomory F, Solovyov M, Souc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466

    [3]

    Wang J G, Zheng X S, Yang J, Zhao Y, Zhang Q L, Yuan T, Zhou J J,Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [王建国, 郑秀书, 杨静, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 物理学报 57 1968]

    [4]

    Zhang S Q, Wu Q 2013 Acta Phys. Sin. 62 029202 (in Chinese) [张少卿, 吴群 2013 物理学报 62 029202]

    [5]

    Jiao C Q 2012 IEEE Trans. Electromagn. Compat. 54 696

    [6]

    Zhang S Q 2012 Chin. Phys. B 21 065101

    [7]

    Chen J, Wang J G 2007 IEEE Trans. Electromagn. Compat. 49 354

    [8]

    Audone B, Balma M 1989 IEEE Trans. Electromagn. Compat 31 102

    [9]

    Wallyn W, Zutter D D, Rogier H 2002 IEEE Trans. Electromagn. Compat 44 130

    [10]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat 40 240

    [11]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans. Electromagn. Compat 50 208

    [12]

    Azaro R, Caorsi S, Donelli M 2001 Microwave and Optical Tech. Lett. 28 289

    [13]

    Moser J R 1988 IEEE Trans. Electromagn. Compat. 30 202

    [14]

    Bannister P R 1968 IEEE Trans. Electromagn. Compat. 10 2

    [15]

    Chiu H K, Lin M S, Chen C H 1997 IEEE Trans. Electromagn. Compat. 39 332

    [16]

    Ali S, Weile D, Clupper T 2005 IEEE Trans. Electromagn. Compat. 47 367

    [17]

    Criel S, Martens L, Zutter D D 1994 IEEE Trans. Electromagn. Compat. 36 161

    [18]

    Wilson P 1995 IEEE Trans. Electromagn. Compat. 37 126

    [19]

    Audone B, Balma M 1989 IEEE Trans. Electromagn. Compat. 31 102

    [20]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans.Electromagn. Compat. 50 208

    [21]

    Shim J J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compat. 52 566

    [22]

    Bethe H A 1944 Phys. Rev. 66 163

    [23]

    Collin R E 1990 Field Theory of Guided Waves (2nd Edn.) (New York: Wiley-IEEE Press)

    [24]

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 134104 (in Chinese) [焦重庆, 齐磊 2012 物理学报 61 134104]

    [25]

    Solin J R 2011 IEEE Trans. Electromagn. Compat. 53 82

    [26]

    Paul C R 2006 Introduction to Electromagnetic Compatibility (2nd Edn) New Jersey: John Wiley & Sons, Inc.

    [27]

    Ren L 1980 Antenna Theory Foundations (Beijing: Posts & Telecom Press) (in Chinese) [任朗 1980 天线理论基础 (北京: 人民邮电出版社)]

  • [1]

    He J L 2010 Introduction to Electromagnetic Compatibility (Beijing: Science Press) (in Chinese) [何金良 2010 电磁兼容概论 (北京: 科学出版社)]

    [2]

    Gomory F, Solovyov M, Souc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466

    [3]

    Wang J G, Zheng X S, Yang J, Zhao Y, Zhang Q L, Yuan T, Zhou J J,Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [王建国, 郑秀书, 杨静, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 物理学报 57 1968]

    [4]

    Zhang S Q, Wu Q 2013 Acta Phys. Sin. 62 029202 (in Chinese) [张少卿, 吴群 2013 物理学报 62 029202]

    [5]

    Jiao C Q 2012 IEEE Trans. Electromagn. Compat. 54 696

    [6]

    Zhang S Q 2012 Chin. Phys. B 21 065101

    [7]

    Chen J, Wang J G 2007 IEEE Trans. Electromagn. Compat. 49 354

    [8]

    Audone B, Balma M 1989 IEEE Trans. Electromagn. Compat 31 102

    [9]

    Wallyn W, Zutter D D, Rogier H 2002 IEEE Trans. Electromagn. Compat 44 130

    [10]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat 40 240

    [11]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans. Electromagn. Compat 50 208

    [12]

    Azaro R, Caorsi S, Donelli M 2001 Microwave and Optical Tech. Lett. 28 289

    [13]

    Moser J R 1988 IEEE Trans. Electromagn. Compat. 30 202

    [14]

    Bannister P R 1968 IEEE Trans. Electromagn. Compat. 10 2

    [15]

    Chiu H K, Lin M S, Chen C H 1997 IEEE Trans. Electromagn. Compat. 39 332

    [16]

    Ali S, Weile D, Clupper T 2005 IEEE Trans. Electromagn. Compat. 47 367

    [17]

    Criel S, Martens L, Zutter D D 1994 IEEE Trans. Electromagn. Compat. 36 161

    [18]

    Wilson P 1995 IEEE Trans. Electromagn. Compat. 37 126

    [19]

    Audone B, Balma M 1989 IEEE Trans. Electromagn. Compat. 31 102

    [20]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans.Electromagn. Compat. 50 208

    [21]

    Shim J J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compat. 52 566

    [22]

    Bethe H A 1944 Phys. Rev. 66 163

    [23]

    Collin R E 1990 Field Theory of Guided Waves (2nd Edn.) (New York: Wiley-IEEE Press)

    [24]

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 134104 (in Chinese) [焦重庆, 齐磊 2012 物理学报 61 134104]

    [25]

    Solin J R 2011 IEEE Trans. Electromagn. Compat. 53 82

    [26]

    Paul C R 2006 Introduction to Electromagnetic Compatibility (2nd Edn) New Jersey: John Wiley & Sons, Inc.

    [27]

    Ren L 1980 Antenna Theory Foundations (Beijing: Posts & Telecom Press) (in Chinese) [任朗 1980 天线理论基础 (北京: 人民邮电出版社)]

  • [1] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜. 物理学报, 2022, 71(13): 134202. doi: 10.7498/aps.71.20212010
    [2] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [3] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [4] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型. 物理学报, 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [5] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [6] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [7] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法. 物理学报, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [8] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响. 物理学报, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [9] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [10] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [11] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [12] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [13] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [14] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究. 物理学报, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [15] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究. 物理学报, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [16] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [17] 江秀娟, 周申蕾, 林尊琪, 朱 俭. 光谱色散后的相位调制光束衍射特性研究. 物理学报, 2006, 55(9): 4595-4601. doi: 10.7498/aps.55.4595
    [18] 杨玉平, 施宇蕾, 严 伟, 徐新龙, 马士华, 汪 力. 一种新型THz显微探测技术. 物理学报, 2005, 54(9): 4079-4083. doi: 10.7498/aps.54.4079
    [19] 李景德, 李智强, 陆夏莲, 沈 韩. 铁电屏蔽理论. 物理学报, 2000, 49(1): 160-163. doi: 10.7498/aps.49.160
    [20] 王桂英. 近场光学理论初探. 物理学报, 1997, 46(11): 2154-2159. doi: 10.7498/aps.46.2154
计量
  • 文章访问数:  5088
  • PDF下载量:  1154
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-09
  • 修回日期:  2013-02-01
  • 刊出日期:  2013-06-05

/

返回文章
返回